• Chinese medical journal · Dec 2019

    Establishment and application of an artificial intelligence diagnosis system for pancreatic cancer with a faster region-based convolutional neural network.

    • Shang-Long Liu, Shuo Li, Yu-Ting Guo, Yun-Peng Zhou, Zheng-Dong Zhang, Shuai Li, and Yun Lu.
    • Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
    • Chin. Med. J. 2019 Dec 5; 132 (23): 279528032795-2803.

    BackgroundEarly diagnosis and accurate staging are important to improve the cure rate and prognosis for pancreatic cancer. This study was performed to develop an automatic and accurate imaging processing technique system, allowing this system to read computed tomography (CT) images correctly and make diagnosis of pancreatic cancer faster.MethodsThe establishment of the artificial intelligence (AI) system for pancreatic cancer diagnosis based on sequential contrast-enhanced CT images were composed of two processes: training and verification. During training process, our study used all 4385 CT images from 238 pancreatic cancer patients in the database as the training data set. Additionally, we used VGG16, which was pre-trained in ImageNet and contained 13 convolutional layers and three fully connected layers, to initialize the feature extraction network. In the verification experiment, we used sequential clinical CT images from 238 pancreatic cancer patients as our experimental data and input these data into the faster region-based convolution network (Faster R-CNN) model that had completed training. Totally, 1699 images from 100 pancreatic cancer patients were included for clinical verification.ResultsA total of 338 patients with pancreatic cancer were included in the study. The clinical characteristics (sex, age, tumor location, differentiation grade, and tumor-node-metastasis stage) between the two training and verification groups were insignificant. The mean average precision was 0.7664, indicating a good training effect of the Faster R-CNN. Sequential contrast-enhanced CT images of 100 pancreatic cancer patients were used for clinical verification. The area under the receiver operating characteristic curve calculated according to the trapezoidal rule was 0.9632. It took approximately 0.2 s for the Faster R-CNN AI to automatically process one CT image, which is much faster than the time required for diagnosis by an imaging specialist.ConclusionsFaster R-CNN AI is an effective and objective method with high accuracy for the diagnosis of pancreatic cancer.Trial RegistrationChiCTR1800017542; http://www.chictr.org.cn.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.