• J. Appl. Physiol. · Nov 2019

    Observational Study

    Time-based pulmonary features from electrical impedance tomography demonstrate ventilation heterogeneity in chronic obstructive pulmonary disease.

    • Stephen Milne, Jacqueline Huvanandana, Chinh Nguyen, Joseph M Duncan, David G Chapman, Katrina O Tonga, Sabine C Zimmermann, Alexander Slattery, Gregory G King, and Cindy Thamrin.
    • Airway Physiology and Imaging Group and Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.
    • J. Appl. Physiol. 2019 Nov 1; 127 (5): 1441-1452.

    AbstractPulmonary electrical impedance tomography (EIT) is a functional imaging technique that allows real-time monitoring of ventilation distribution. Ventilation heterogeneity (VH) is a characteristic feature of chronic obstructive pulmonary disease (COPD) and has previously been quantified using features derived from tidal variations in the amplitude of the EIT signal. However, VH may be better described by time-based metrics, the measurement of which is made possible by the high temporal resolution of EIT. We aimed 1) to quantify VH using novel time-based EIT metrics and 2) to determine the physiological relevance of these metrics by exploring their relationships with complex lung mechanics measured by the forced oscillation technique (FOT). We performed FOT, spirometry, and tidal-breathing EIT measurements in 11 healthy controls and 9 volunteers with COPD. Through offline signal processing, we derived 3 features from the impedance-time (Z-t) curve for each image pixel: 1) tE, mean expiratory time; 2) PHASE, mean time difference between pixel and global Z-t curves; and 3) AMP, mean amplitude of Z-t curve tidal variation. Distribution was quantified by the coefficient of variation (CV) and the heterogeneity index (HI). Both CV and HI of the tE and PHASE features were significantly increased in COPD compared with controls, and both related to spirometry and FOT resistance and reactance measurements. In contrast, distribution of the AMP feature showed no relationships with lung mechanics. These novel time-based EIT metrics of VH reflect complex lung mechanics in COPD and have the potential to allow real-time visualization of pulmonary physiology in spontaneously breathing subjects.NEW & NOTEWORTHY Pulmonary electrical impedance tomography (EIT) is a real-time imaging technique capable of monitoring ventilation with exquisite temporal resolution. We report novel, time-based EIT measurements that not only demonstrate ventilation heterogeneity in chronic obstructive pulmonary disease (COPD), but also reflect oscillatory lung mechanics. These EIT measurements are noninvasive, radiation-free, easy to obtain, and provide real-time visualization of the complex pathophysiology of COPD.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…