• Chest · Mar 2021

    Behavioral and regional brain responses to inhalation of capsaicin modified by painful conditioning in humans.

    • Abubakar B Abubakar, Tara G Bautista, Matthew R Dimmock, Stuart B Mazzone, and Michael J Farrell.
    • Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia.
    • Chest. 2021 Mar 1; 159 (3): 1136-1146.

    BackgroundCough is a defense mechanism that protects the airways and lungs in response to airway irritation. The sensory neurons involved in detecting airway irritants and the neural pathways mediating cough share similarities with those that encode pain from the body. Painful conditioning stimuli applied to one body site are known to reduce the perception of pain at another. However, whether the neural regulation of cough is influenced by painful stimuli is not known.Research QuestionWhat are the behavioral and neural outcomes of painful conditioning stimuli on urge-to-cough (UTC) and cough evoked by inhaled capsaicin?Study Design And MethodsSixteen healthy participants underwent psychophysical testing and functional MRI while completing a series of capsaicin inhalations to induce UTC and cough. The responses associated with capsaicin inhalation without pain were compared with those after the application of painful conditioning stimuli.ResultsSignificant decreases were seen behaviorally of 18.7% ± 17.3% (P < .001) and 47.0% ± 30.8% (P < .001) in participants' UTC ratings and cough frequencies, respectively, during the application of pain. UTC ratings were reduced by 24.2% ± 36.5% (P < .005) and increased by 67% ± 40% (P < .001) for capsaicin and saline inhalation, respectively, during the scanning session. Painful conditioning stimuli were associated with widespread decreases in regional brain responses to capsaicin inhalation (P < .001). Several brain regions showed levels of reduced activation attributable to painful conditioning that correlated with related changes in behavioral responses during scanning (R2 = 0.53).InterpretationPain-related decreases of cough and UTC are accompanied by widespread changes in brain activity during capsaicin inhalation, suggesting that pain can modify the central processing of inputs arising from the airways. A mechanistic understanding of how cough and pain processing interact within the brain may help develop more effective therapies to reduce unwanted coughing.Copyright © 2020 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.