• Anesthesiology · Jan 2021

    Aerosol Retention Characteristics of Barrier Devices.

    • Richard L Fidler, Christopher R Niedek, Justin J Teng, Mary E Sturgeon, Qi Zhang, David L Robinowitz, and Jan Hirsch.
    • Anesthesiology. 2021 Jan 1; 134 (1): 61-71.

    BackgroundDisease severity in coronavirus disease 2019 (COVID-19) may be associated with inoculation dose. This has triggered interest in intubation barrier devices to block droplet exposure; however, aerosol protection with these devices is not known. This study hypothesized that barrier devices reduce aerosol outside of the barrier.MethodsAerosol containment in closed, semiclosed, semiopen, and open barrier devices was investigated: (1) "glove box" sealed with gloves and caudal drape, (2) "drape tent" with a drape placed over a frame, (3) "slit box" with armholes and caudal end covered by vinyl slit diaphragms, (4) original "aerosol box," (5) collapsible "interlocking box," (6) "simple drape" over the patient, and (7) "no barrier." Containment was investigated by (1) vapor instillation at manikin's right arm with video-assisted visual evaluation and (2) submicrometer ammonium sulfate aerosol particles ejected through the manikin's mouth with ventilation and coughs. Samples were taken from standardized locations inside and around the barriers using a particle counter and a mass spectrometer. Aerosol evacuation from the devices was measured using standard hospital suction, a surgical smoke evacuator, and a Shop-Vac.ResultsVapor experiments demonstrated leakage via arm holes and edges. Only closed and semiclosed devices and the aerosol box reduced aerosol particle counts (median [25th, 75th percentile]) at the operator's mouth compared to no barrier (combined median 29 [-11, 56], n = 5 vs. 157 [151, 166], n = 5). The other barrier devices provided less reduction in particle counts (133 [128, 137], n = 5). Aerosol evacuation to baseline required 15 min with standard suction and the Shop-Vac and 5 min with a smoke evacuator.ConclusionsBarrier devices may reduce exposure to droplets and aerosol. With meticulous tucking, the glove box and drape tent can retain aerosol during airway management. Devices that are not fully enclosed may direct aerosol toward the laryngoscopist. Aerosol evacuation reduces aerosol content inside fully enclosed devices. Barrier devices must be used in conjunction with body-worn personal protective equipment.Editor’s PerspectiveCopyright © 2020, the American Society of Anesthesiologists, Inc. All Rights Reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.