-
J Air Waste Manag Assoc · May 2013
Receptor model source attributions for Utah's Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol.
- Kerry E Kelly, Robert Kotchenruther, Roman Kuprov, and Geoffrey D Silcox.
- Department of Chemical Engineering, University of Utah, 380 INSCC, Salt Lake City, UT 84112, USA. Kelly@eng.utah.edu
- J Air Waste Manag Assoc. 2013 May 1; 63 (5): 575-90.
UnlabelledCommunities along Utah's Wasatch Front are currently developing strategies to reduce daily average PM2.5 levels to below National Ambient Air Quality Standards during wintertime persistent stable atmospheric conditions, or cold-air pools. Speciated PM2.5 data from the Wasatch Front airshed indicate that wintertime exceedances of the PM2.5 standard are mainly driven by high levels of ammonium nitrate. Stable wintertime conditions foster the formation of ammonium nitrate aerosol when sufficient sources of NO(x), ammonia, and oxidative capacity exist. However this work demonstrates that secondary ammonium chloride aerosol can also be a significant source of secondary wintertime PM2.5 if sufficient sources of atmospheric chlorine exist. Two factor analysis techniques, positive matrix factorization (PMF) and Unmix, were used to identify contributors to PM2.5 at three monitoring stations along Utah's Wasatch Front: Bountiful, Lindon, and Salt Lake City. The monitoring data included chemically speciated PM2.5 data for 227, 227, and 429 days at each location, respectively, during the period from May 2007 through May 2011. PMF identified 10-12 factors and Unmix identified 4-5 factors for each of the locations. The wintertime PMF and Unmix results showed large contributions from secondary PM2.5 when PM2.5 concentrations exceeded 20 microg/m3. PMF identified both ammonium nitrate and ammonium chloride aerosol as significant secondary contributors to PM2.5 (10-15% of total PM2.5 from ammonium chloride) during wintertime pollution episodes. Subsequent ion balance analysis of the monitoring data confirmed the presence of significant ammonium chloride aerosol on these highly polluted days at all three monitoring sites. The directly emitted primary PM2.5 portions of the source attribution results were further compared to county-level emissions inventories and showed generally good agreement for Salt Lake City and Lindon during wintertime except for wood smoke and fugitive dust, which have higher contributions in the receptor modeling results than in the emissions inventories.ImplicationsThe study suggests that secondary ammonium chloride aerosol can be a significant source ofwintertime PM2.5 in an ammonia-rich environment, like the Wasatch Front airshed, if sufficient sources of atmospheric chlorine exist. During wintertime, cold-air-pool events, the source attribution results generally agree with the county emission inventories with the exception of wood smoke and cooking sources. At the Salt Lake City monitoring station, the estimated contributions from wood smoke and cooking are nearly double those of the corresponding inventory, suggesting that they are nearly as important as gasoline emissions.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.