• Artificial organs · Sep 2018

    In Vitro Hemodynamic Evaluation of an Adult Pulsatile Extracorporeal Membrane Oxygenation System.

    • Shigang Wang, Morgan Moroi, Christoph E Brehm, Allen R Kunselman, and Akif Ündar.
    • Department of Pediatrics, Penn State Health Pediatric Cardiovascular Research Center, Penn State College of Medicine, Penn State Health Children's Hospital, Hershey, PA, USA.
    • Artif Organs. 2018 Sep 1; 42 (9): E234-E245.

    AbstractThe objective of this study was to evaluate a pulsatile extracorporeal membrane oxygenation (ECMO) system in terms of hemodynamic energy generation and transmission under various pulsatile amplitudes, flow rates, and pseudopatient pressures in a simulated adult ECMO circuit. Surplus hemodynamic energy (SHE), a measure of the quality of pulsatility, was used to quantify pulsatile flow. The circuit consisted of an i-cor diagonal pump, an adult XLung oxygenator, a 21 Fr Medtronic Biomedicus femoral arterial cannula, a 23/25 Fr Sorin RAP femoral venous cannula, and 3/8 in ID tubing for both arterial and venous lines. The circuit was primed with lactated Ringer's solution and then packed red blood cells (hematocrit 37%). Trials were conducted at 36°C with flow rates of 2-5 L/min (1 L/min increments) under nonpulsatile and pulsatile mode with pulsatile amplitudes of 1000-5000 rpm (1000 rpm increments). The pseudopatient pressure was maintained at 40-100 mm Hg (20 mm Hg increments). Real-time pressure and flow data were recorded for analysis using a custom-made data acquisition system. There was no SHE generated by the pump under nonpulsatile mode. Under pulsatile mode, SHE levels increased with increasing pulsatile amplitude and pseudopatient pressure (P < 0.01) but decreased with increasing flow rate. SHE levels were significantly higher at flow rates of 2-4 L/min. In addition, the XLung oxygenator had acceptable pressure drops (36.1-104.9 mm Hg) and percentages of total hemodynamic energy loss (19.6-43.9%) during all trials. The novel pulsatile ECMO system can create nonpulsatile and pulsatile flow in an adult ECMO model. However, pulsatility gradually weakened with increasing flow rates. Pulsatile amplitude settings were found to have a great impact on pulsatility.© 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.