• Patient Prefer Adher · Jan 2020

    Group-Based Trajectory Modeling to Identify Patterns of Adherence and Its Predictors Among Older Adults on Angiotensin-Converting Enzyme Inhibitors (ACEIs)/Angiotensin Receptor Blockers (ARBs).

    • Rutugandha Paranjpe, Michael L Johnson, Ekere J Essien, Jamie C Barner, Omar Serna, Esteban Gallardo, Zahra Majd, Marc L Fleming, Nancy Ordonez, Marcia M Holstad, and Susan M Abughosh.
    • Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, USA.
    • Patient Prefer Adher. 2020 Jan 1; 14: 1935-1947.

    PurposeCommonly prescribed medications among patients with comorbid diabetes mellitus and hypertension include ARBs and ACEIs. However, these medications are associated with suboptimal adherence leading to inadequately controlled blood pressure. Unlike traditional single estimates of proportion of days covered (PDC), group-based trajectory modeling (GBTM) can graphically display the dynamic nature of adherence. The objective of this study was to evaluate adherence using GBTMs among patients prescribed ACEI/ARBs and identify predictors associated with each adherence trajectory.Patients And MethodsPatients with an ACEI/ARBs prescription were identified between July 2017 and December 2017 using a Medicare Advantage dataset. PDC was used to measure monthly patient adherence during the one-year follow-up period. The monthly PDC was added to a logistic group-based trajectory model to provide distinct patterns of adherence. Further, a multinomial logistic regression was conducted to determine predictors of each identified adherence trajectory. Predictors included various socio-demographic and clinical patient characteristics.ResultsA total of 22,774 patients were included in the analysis and categorized into 4 distinct adherence trajectories: rapid decline (12.6%); adherent (58.5%); gaps in adherence (12.2%), and gradual decline (16.6%). Significant predictors associated with all lower adherence trajectories included 90 days refill, >2 number of other medications, ≥1 hospitalizations, and prevalent users. Significant predictors associated with the rapid decline trajectory included male sex, comorbidities, and increased CMS risk score. Further, significant predictors associated with the gaps in adherence trajectory included increasing age, and comorbidities. Lastly, significant predictors associated with the gradual decline trajectory included increasing age, no health plan subsidy, comorbidities, and increasing CMS risk score.ConclusionIdentifying various patient characteristics associated with non-adherent trajectories can guide the development of tailored interventions to enhance adherence to ACEI/ARBs.© 2020 Paranjpe et al.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.