• Otolaryngol Head Neck Surg · Sep 2020

    Airborne Aerosol Generation During Endonasal Procedures in the Era of COVID-19: Risks and Recommendations.

    • Alan D Workman, Aria Jafari, D Bradley Welling, Mark A Varvares, Stacey T Gray, Eric H Holbrook, George A Scangas, Roy Xiao, Bob S Carter, William T Curry, and Benjamin S Bleier.
    • Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.
    • Otolaryngol Head Neck Surg. 2020 Sep 1; 163 (3): 465-470.

    ObjectiveIn the era of SARS-CoV-2, the risk of infectious airborne aerosol generation during otolaryngologic procedures has been an area of increasing concern. The objective of this investigation was to quantify airborne aerosol production under clinical and surgical conditions and examine efficacy of mask mitigation strategies.Study DesignProspective quantification of airborne aerosol generation during surgical and clinical simulation.SettingCadaver laboratory and clinical examination room.Subjects And MethodsAirborne aerosol quantification with an optical particle sizer was performed in real time during cadaveric simulated endoscopic surgical conditions, including hand instrumentation, microdebrider use, high-speed drilling, and cautery. Aerosol sampling was additionally performed in simulated clinical and diagnostic settings. All clinical and surgical procedures were evaluated for propensity for significant airborne aerosol generation.ResultsHand instrumentation and microdebridement did not produce detectable airborne aerosols in the range of 1 to 10 μm. Suction drilling at 12,000 rpm, high-speed drilling (4-mm diamond or cutting burs) at 70,000 rpm, and transnasal cautery generated significant airborne aerosols (P < .001). In clinical simulations, nasal endoscopy (P < .05), speech (P < .01), and sneezing (P < .01) generated 1- to 10-μm airborne aerosols. Significant aerosol escape was seen even with utilization of a standard surgical mask (P < .05). Intact and VENT-modified (valved endoscopy of the nose and throat) N95 respirator use prevented significant airborne aerosol spread.ConclusionTransnasal drill and cautery use is associated with significant airborne particulate matter production in the range of 1 to 10 μm under surgical conditions. During simulated clinical activity, airborne aerosol generation was seen during nasal endoscopy, speech, and sneezing. Intact or VENT-modified N95 respirators mitigated airborne aerosol transmission, while standard surgical masks did not.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.