-
- Callisia N Clarke, Sameer H Patel, Ryan W Day, Sobha George, Colin Sweeney, Georgina Avaloa Monetes De Oca, Mohamed Ait Aiss, Elizabeth G Grubbs, Brian K Bednarski, Jeffery E Lee, Diane C Bodurka, John M Skibber, and Thomas A Aloia.
- Division of Surgical Oncology, Department of Surgery, The Medical College of Wisconsin, Milwaukee, WI.
- Surgery. 2017 Mar 1; 161 (3): 869-875.
BackgroundDuty-hour regulations have increased the frequency of trainee-trainee patient handoffs. Each handoff creates a potential source for communication errors that can lead to near-miss and patient-harm events. We investigated the utility, efficacy, and trainee experience associated with implementation of a novel, standardized, electronic handoff system.MethodsWe conducted a prospective intervention study of trainee-trainee handoffs of inpatients undergoing complex general surgical oncology procedures at a large tertiary institution. Preimplementation data were measured using trainee surveys and direct observation and by tracking delinquencies in charting. A standardized electronic handoff tool was created in a research electronic data capture (REDCap) database using the previously validated I-PASS methodology (illness severity, patient summary, action list, situational awareness and contingency planning, and synthesis). Electronic handoff was augmented by direct communication via phone or face-to-face interaction for inpatients deemed "watcher" or "unstable." Postimplementation handoff compliance, communication errors, and trainee work flow were measured and compared to preimplementation values using standard statistical analysis.ResultsA total of 474 handoffs (203 preintervention and 271 postintervention) were observed over the study period; 86 handoffs involved patients admitted to the surgical intensive care unit, 344 patients admitted to the surgical stepdown unit, and 44 patients on the surgery ward. Implementation of the structured electronic tool resulted in an increase in trainee handoff compliance from 73% to 96% (P < .001) and decreased errors in communication by 50% (P = .044) while improving trainee efficiency and workflow.ConclusionA standardized electronic tool augmented by direct communication for higher acuity patients can improve compliance, accuracy, and efficiency of handoff communication between surgery trainees.Copyright © 2016 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.