• J Eval Clin Pract · Jun 2021

    For a critical appraisal of artificial intelligence in healthcare: The problem of bias in mHealth.

    • Nicolas Brault and Mohit Saxena.
    • Nicolas Brault, Interact UP 2018.C102, UniLaSalle, Beauvais, France.
    • J Eval Clin Pract. 2021 Jun 1; 27 (3): 513-519.

    Rationale, Aims And ObjectivesArtificial intelligence and big data are more and more used in medicine, either in prevention, diagnosis or treatment, and are clearly modifying the way medicine is thought and practiced. Some authors argue that the use of artificial intelligence techniques to analyze big data would even constitute a scientific revolution, in medicine as much as in other scientific disciplines. Moreover, artificial intelligence techniques, coupled with mobile health technologies, could furnish a personalized medicine, adapted to the individuality of each patient. In this paper we argue that this conception is largely a myth: what health professionals and patients need is not more data, but data that are critically appraised, especially to avoid bias.MethodsIn this historical and conceptual article, we focus on two main problems: first, the data and the problem of its validity; second, the inference drawn from the data by AI, and the establishment of correlations through the use of algorithms. We use examples from the contemporary use of mobile health (mHealth), i.e. the practice of medicine and public health supported by mobile or wearable devices such as mobile phones or smart watches.ResultsWe show that the validity of the data and of the inferences drawn from these mHealth data are likely to be biased. As biases are insensitive to the size of the sample, even if the sample is the whole population, artificial intelligence and big data cannot avoid biases and even tend to increase them.ConclusionsThe large amount of data thus appears rather as a problem than a solution. What contemporary medicine needs is not more data or more algorithms, but a critical appraisal of the data and of the analysis of the data. Considering the history of epidemiology, we propose three research priorities concerning the use of artificial intelligence and big data in medicine.© 2020 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.