• Medicine · Jan 2021

    Meta Analysis

    Diagnostic accuracy of different computer-aided diagnostic systems for prostate cancer based on magnetic resonance imaging: A systematic review with diagnostic meta-analysis.

    • Xiping Xing, Xinke Zhao, Huiping Wei, and Yingdong Li.
    • Affiliated hospital of Gansu University of Chinese Medicine.
    • Medicine (Baltimore). 2021 Jan 22; 100 (3): e23817e23817.

    BackgroundComputer-aided detection (CAD) system for accurate and automated prostate cancer (PCa) diagnosis have been developed, however, the diagnostic test accuracy of different CAD systems is still controversial. This systematic review aimed to assess the diagnostic accuracy of CAD systems based on magnetic resonance imaging for PCa.MethodsCochrane library, PubMed, EMBASE and China Biology Medicine disc were systematically searched until March 2019 for original diagnostic studies. Two independent reviewers selected studies on CAD based on magnetic resonance imaging diagnosis of PCa and extracted the requisite data. Pooled sensitivity, specificity, and the area under the summary receiver operating characteristic curve were calculated to estimate the diagnostic accuracy of CAD system.ResultsFifteen studies involving 1945 patients were included in our analysis. The diagnostic meta-analysis showed that overall sensitivity of CAD system ranged from 0.47 to 1.00 and, specificity from 0.47 to 0.89. The pooled sensitivity of CAD system was 0.87 (95% CI: 0.76-0.94), pooled specificity 0.76 (95% CI: 0.62-0.85), and the area under curve (AUC) 0.89 (95% CI: 0.86-0.91). Subgroup analysis showed that the support vector machines produced the best AUC among the CAD classifiers, with sensitivity ranging from 0.87 to 0.92, and specificity from 0.47 to 0.95. Among different zones of prostate, CAD system produced the best AUC in the transitional zone than the peripheral zone and central gland; sensitivity ranged from 0.89 to 1.00, and specificity from 0.38 to 0.85.ConclusionsCAD system can help improve the diagnostic accuracy of PCa especially using the support vector machines classifier. Whether the performance of the CAD system depends on the specific locations of the prostate needs further investigation.Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.