• J. Appl. Physiol. · May 2018

    Chest wall strapping increases expiratory airflow and detectable airway segments in computer tomographic scans of normal and obstructed lungs.

    • Hisham Taher, Christian Bauer, Eric Abston, David W Kaczka, Surya P Bhatt, Joseph Zabner, Roy G Brower, Reinhard R Beichel, and Michael Eberlein.
    • Department and Internal Medicine, University of Iowa , Iowa City, Iowa.
    • J. Appl. Physiol. 2018 May 1; 124 (5): 1186-1193.

    AbstractChest wall strapping (CWS) induces breathing at low lung volumes but also increases parenchymal elastic recoil. In this study, we tested the hypothesis that CWS dilates airways via airway-parenchymal interdependence. In 11 subjects (6 healthy and 5 with mild to moderate COPD), pulmonary function tests and lung volumes were obtained in control (baseline) and the CWS state. Control and CWS-CT scans were obtained at 50% of control (baseline) total lung-capacity (TLC). CT lung volumes were analyzed by CT volumetry. If control and CWS-CT volumetry did not differ by more than 25%, airway dimensions were analyzed via automated airway segmentation. CWS-TLC was reduced on average to 71% of control-TLC in normal subjects and 79% of control-TLC in subjects with COPD. CWS increased expiratory airflow at 50% of control-TLC by 41% (3.50 ± 1.6 vs. 4.93 ± 1.9 l/s, P = 0.04) in normals and 316% in COPD(0.25 ± 0.05 vs 0.79 ± 0.39 l/s, P = 0.04). In 10 subjects (5 normals and 5 COPD), control and CWS-CT scans at 50% control-TLC did not differ more than 25% on CT volumetry and were included in the airway structure analysis. CWS increased the mean number of detectable airways with a diameter of ≤2 mm by 32.5% (65 ± 10 vs. 86 ± 124, P = 0.01) in normal subjects and by 79% (59 ± 19 vs. 104 ± 16, P = 0.01) in subjects with COPD. There was no difference in the number of detectable airways with diameters 2-4 mm and >4 mm in normal or in COPD subjects. In conclusion, CWS enhances the detection of small airways via automated CT airway segmentation and increases expiratory airflow in normal subjects as well as in subjects with mild to moderate COPD. NEW & NOTEWORTHY In normal and COPD subjects, chest wall strapping(CWS) increased the number of detectable small airways using automated CT airway segmentation. The concept of dysanapsis expresses the physiological variation in the geometry of the tracheobronchial tree and lung parenchyma based on development. We propose a dynamic concept to dysanapsis in which CWS leads to breathing at lower lung volumes with a corresponding increase in the size of small airways, a potentially novel, nonpharmacological treatment for COPD.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.