• J. Appl. Physiol. · Jul 2007

    Comparative Study

    Cerebral oxygen delivery by liposome-encapsulated hemoglobin: a positron-emission tomographic evaluation in a rat model of hemorrhagic shock.

    • Vibhudutta Awasthi, Seong-Hwan Yee, Paul Jerabek, Beth Goins, and William T Phillips.
    • Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA. vawasthi@ouhsc.edu
    • J. Appl. Physiol. 2007 Jul 1; 103 (1): 28-38.

    AbstractLiposome-encapsulated Hb (LEH) is being developed as an artificially assembled, low-toxicity, and spatially isolated Hb-based oxygen carrier (HBOC). Standard methods of evaluating oxygen carriers are based on surrogate indicators of physiology in animal models of shock. Assessment of actual delivery of oxygen by HBOCs and resultant improvement in oxygen metabolism at the tissue level has been a technical challenge. In this work, we report our findings from 15O-positron emission tomographic (15O-PET) evaluation of LEH in a rat model of 40% hypovolemic shock. In vitro studies showed that PEGylated LEH formulation containing approximately 7.5% Hb and consisting of neutral lipids (distearoylphosphatidylcholine:cholesterol:alpha-tocopherol, 51.4:46.4:2.2) efficiently picks up 15O-labeled oxygen gas. The final preparation of LEH contained 5% human serum albumin to provide oncotic pressure. Cerebral PET images of anesthetized rats inhaling 15O-labeled O2 gas showed efficient oxygen-carrying and delivery capacity of LEH formulation. From the PET images, we determined cerebral metabolic rate of oxygen (CMR(O2)) as a direct indicator of oxygen-carrying capacity of LEH as well as oxygen delivery and metabolism in rat brain. Compared with control fluids [saline and 5% human serum albumin (HSA)], LEH significantly improved CMR(O2) to approximately 80% of baseline level. Saline and HSA resuscitation could not improve hypovolemia-induced decrease in CMR(O2). On the other hand, resuscitation of shed blood was the most efficient in restoring oxygen metabolism. The results suggest that 15O-PET technology can be successfully employed to evaluate potential oxygen carriers and blood substitutes and that LEH resuscitation in hemorrhage enhances oxygen delivery to the cerebral tissue and improves oxygen metabolism in brain.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…