• Am J Emerg Med · Aug 2021

    Predicting waiting and treatment times in emergency departments using ordinal logistic regression models.

    • Mustafa Gökalp Ataman and Görkem Sarıyer.
    • Izmir Bakırçay University Çiğli Training and Research Hospital, Department of Emergency Medicine, Turkey. Electronic address: gokalpataman@gmail.com.
    • Am J Emerg Med. 2021 Aug 1; 46: 45-50.

    BackgroundSince providing timely care is the primary concern of emergency departments (EDs), long waiting times increase patient dissatisfaction and adverse outcomes. Especially in overcrowded ED environments, emergency care quality can be significantly improved by developing predictive models of patients' waiting and treatment times to use in ED operations planning.MethodsRetrospective data on 37,711 patients arriving at the ED of a large urban hospital were examined. Ordinal logistic regression models were proposed to identify factors causing increased waiting and treatment times and classify patients with longer waiting and treatment times.ResultsAccording to the proposed ordinal logistic regression model for waiting time prediction, age, arrival mode, and ICD-10 encoded diagnoses are all significant predictors. The model had 52.247% accuracy. The model for treatment time showed that in addition to age, arrival mode, and diagnosis, triage level was also a significant predictor. The model had 66.365% accuracy. The model coefficients had negative signs in the corresponding models, indicating that waiting times are negatively related to treatment times.ConclusionBy predicting patients' waiting and treatment times, ED workloads can be assessed instantly. This enables ED personnel to be scheduled to better manage demand supply deficiencies, increase patient satisfaction by informing patients and relatives about expected waiting times, and evaluate performances to improve ED operations and emergency care quality.Copyright © 2021 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.