• European radiology · Jan 2021

    Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?

    • Xiaoyang Liu, Farzad Khalvati, Khashayar Namdar, Sandra Fischer, Sara Lewis, Bachir Taouli, Masoom A Haider, and Kartik S Jhaveri.
    • Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada.
    • Eur Radiol. 2021 Jan 1; 31 (1): 244-255.

    ObjectiveTo differentiate combined hepatocellular cholangiocarcinoma (cHCC-CC) from cholangiocarcinoma (CC) and hepatocellular carcinoma (HCC) using machine learning on MRI and CT radiomics features.MethodsThis retrospective study included 85 patients aged 32 to 86 years with 86 histopathology-proven liver cancers: 24 cHCC-CC, 24 CC, and 38 HCC who had MRI and CT between 2004 and 2018. Initial CT reports and morphological evaluation of MRI features were used to assess the performance of radiologists read. Following tumor segmentation, 1419 radiomics features were extracted using PyRadiomics library and reduced to 20 principle components by principal component analysis. Support vector machine classifier was utilized to evaluate MRI and CT radiomics features for the prediction of cHCC-CC vs. non-cHCC-CC and HCC vs. non-HCC. Histopathology was the reference standard for all tumors.ResultsRadiomics MRI features demonstrated the best performance for differentiation of cHCC-CC from non-cHCC-CC with the highest AUC of 0.77 (SD 0.19) while CT was of limited value. Contrast-enhanced MRI phases and pre-contrast and portal-phase CT showed excellent performance for the differentiation of HCC from non-HCC (AUC of 0.79 (SD 0.07) to 0.81 (SD 0.13) for MRI and AUC of 0.81 (SD 0.06) and 0.71 (SD 0.15) for CT phases, respectively). The misdiagnosis of cHCC-CC as HCC or CC using radiologists read was 69% for CT and 58% for MRI.ConclusionsOur results demonstrate promising predictive performance of MRI and CT radiomics features using machine learning analysis for differentiation of cHCC-CC from HCC and CC with potential implications for treatment decisions.Key Points• Retrospective study demonstrated promising predictive performance of MRI radiomics features in the differentiation of cHCC-CC from HCC and CC and of CT radiomics features in the differentiation of HCC from cHCC-CC and CC. • With future validation, radiomics analysis has the potential to inform current clinical practice for the pre-operative diagnosis of cHCC-CC and to enable optimal treatment decisions regards liver resection and transplantation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…