-
- Shiroh Isono, Natsuko Nozaki-Taguchi, Makoto Hasegawa, Shinichiro Kato, Shinsuke Todoroki, Shigemi Masuda, Norihito Iida, Toshiaki Nishimura, Masatoshi Noto, and Yasunori Sato.
- Department of Anesthesiology, Graduate School of Medicine, Chiba University , Chiba , Japan.
- J. Appl. Physiol. 2019 May 1; 126 (5): 1432-1441.
AbstractRate of respiration is a fundamental vital sign. Accuracy and precision of respiratory rate measurements with contact-free load cell sensors under the bed legs were assessed by breath-by-breath comparison with the pneumotachography technique during two different dynamic breathing tasks in 16 awake human adults resting on the bed. The subject voluntarily increased and decreased the respiratory rate between 4 and 16 breaths/min (n = 8) and 10 and 40 breaths/min (n = 8) at every 2 breaths in 6 different lying postures such as supine, left lateral, right lateral, and 30, 45, and 60° sitting postures. Reciprocal phase changes of the upper and lower load cell signals accorded with the respiratory phases indicating respiratory-related shifts of the centroid along the long axis of the bed. Bland-Altman analyses revealed 0.66 and 1.59 breaths/min standard deviation differences between the techniques (limits of agreement: -1.22 to 1.36 and -2.96 to 3.30) and 0.07 and 0.17 breaths/min fixed bias differences (accuracy) (confidence interval: 0.04 to 0.10 and 0.12 to 0.22) for the mean respiratory rates of 10.5 ± 3.7 and 24.6 ± 8.9 breaths/min, respectively, regardless of the body postures on the bed. Proportional underestimation by this technique was evident for respiratory rates >40 breaths/min. Sample breath increase up to 10 breaths improved the precision from 1.59 to 0.26 breaths/min. Abnormally faster and slower respirations were accurately detected. We conclude that contact-free unconstraint respiratory rate measurements with load cells under the bed legs are accurate and may serve as a new clinical and investigational tool. NEW & NOTEWORTHY Four load cells placed under the bed legs successfully captured a centroid shift during respiration in human subjects lying on a bed. Breath-by-breath comparison of the breaths covering a wide respiratory rate range by pneumotachography confirmed reliability of the contact-free unconstraint respiratory rate measurements by small standard deviations and biases regardless of body postures. Abnormally faster and slower respirations were accurately detected. This technique should be an asset as a new clinical and investigational tool.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.