-
- Stephen Bacchi, Luke Oakden-Rayner, David K Menon, Jim Jannes, Timothy Kleinig, and Simon Koblar.
- Royal Adelaide Hospital, Adelaide, SA 5000, Australia; University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia. Electronic address: stephen.bacchi@sa.gov.au.
- J Clin Neurosci. 2020 Sep 1; 79: 100-103.
AbstractPost-stroke discharge planning may be aided by accurate early prognostication. Machine learning may be able to assist with such prognostication. The study's primary aim was to evaluate the performance of machine learning models using admission data to predict the likely length of stay (LOS) for patients admitted with stroke. Secondary aims included the prediction of discharge modified Rankin Scale (mRS), in-hospital mortality, and discharge destination. In this study a retrospective dataset was used to develop and test a variety of machine learning models. The patients included in the study were all stroke admissions (both ischaemic stroke and intracerebral haemorrhage) at a single tertiary hospital between December 2016 and September 2019. The machine learning models developed and tested (75%/25% train/test split) included logistic regression, random forests, decision trees and artificial neural networks. The study included 2840 patients. In LOS prediction the highest area under the receiver operator curve (AUC) was achieved on the unseen test dataset by an artificial neural network at 0.67. Higher AUC were achieved using logistic regression models in the prediction of discharge functional independence (mRS ≤2) (AUC 0.90) and in the prediction of in-hospital mortality (AUC 0.90). Logistic regression was also the best performing model for predicting home vs non-home discharge destination (AUC 0.81). This study indicates that machine learning may aid in the prognostication of factors relevant to post-stroke discharge planning. Further prospective and external validation is required, as well as assessment of the impact of subsequent implementation.Copyright © 2020 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.