• Thorax · Nov 2019

    Multicenter Study

    Predicting risk of unplanned hospital readmission in survivors of critical illness: a population-level cohort study.

    • Nazir I Lone, Robert Lee, Lisa Salisbury, Eddie Donaghy, Pamela Ramsay, Janice Rattray, and Timothy S Walsh.
    • University Department of Anaesthesia, Critical Care, and Pain Medicine, School of Clinical Sciences, University of Edinburgh, Edinburgh, UK.
    • Thorax. 2019 Nov 1; 74 (11): 1046-1054.

    BackgroundIntensive care unit (ICU) survivors experience high levels of morbidity after hospital discharge and are at high risk of unplanned hospital readmission. Identifying those at highest risk before hospital discharge may allow targeting of novel risk reduction strategies. We aimed to identify risk factors for unplanned 90-day readmission, develop a risk prediction model and assess its performance to screen for ICU survivors at highest readmission risk.MethodsPopulation cohort study linking registry data for patients discharged from general ICUs in Scotland (2005-2013). Independent risk factors for 90-day readmission and discriminant ability (c-index) of groups of variables were identified using multivariable logistic regression. Derivation and validation risk prediction models were constructed using a time-based split.ResultsOf 55 975 ICU survivors, 24.1% (95%CI 23.7% to 24.4%) had unplanned 90-day readmission. Pre-existing health factors were fair discriminators of readmission (c-index 0.63, 95% CI 0.63 to 0.64) but better than acute illness factors (0.60) or demographics (0.54). In a subgroup of those with no comorbidity, acute illness factors (0.62) were better discriminators than pre-existing health factors (0.56). Overall model performance and calibration in the validation cohort was fair (0.65, 95% CI 0.64 to 0.66) but did not perform sufficiently well as a screening tool, demonstrating high false-positive/false-negative rates at clinically relevant thresholds.ConclusionsUnplanned 90-day hospital readmission is common. Pre-existing illness indices are better predictors of readmission than acute illness factors. Identifying additional patient-centred drivers of readmission may improve risk prediction models. Improved understanding of risk factors that are amenable to intervention could improve the clinical and cost-effectiveness of post-ICU care and rehabilitation.© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.