-
- Argelia Medeiros-Domingo, Bi-Hua Tan, Pedro Iturralde-Torres, David J Tester, Teresa Tusié-Luna, Jonathan C Makielski, and Michael J Ackerman.
- Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA.
- Heart Rhythm. 2009 Aug 1; 6 (8): 1170-5.
BackgroundFunctional characterization of mutations involving the SCN5A-encoded cardiac sodium channel has established the pathogenic mechanisms for type 3 long QT syndrome and type 1 Brugada syndrome and has provided key insights into the physiological importance of essential structure-function domains.ObjectiveThis study sought to present the clinical and biophysical phenotypes discerned from compound heterozygosity mutations in SCN5A on different alleles in a toddler diagnosed with QT prolongation and fever-induced ventricular arrhythmias.MethodsA 22-month-old boy presented emergently with fever and refractory ventricular tachycardia. Despite restoration of sinus rhythm, the infant sustained profound neurological injury and died. Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, comprehensive open-reading frame/splice mutational analysis of the 12 known long QT syndrome susceptibility genes was performed.ResultsThe infant had 2 SCN5A mutations: a maternally inherited N-terminal frame shift/deletion (R34fs/60) and a paternally inherited missense mutation, R1195H. The mutations were engineered by site-directed mutagenesis and heterologously expressed transiently in HEK293 cells. As expected, the frame-shifted and prematurely truncated peptide, SCN5A-R34fs/60, showed no current. SCN5A-R1195H had normal peak and late current but abnormal voltage-dependent gating parameters. Surprisingly, co-expression of SCN5A-R34fs/60 with SCN5A-R1195H elicited a significant increase in late sodium current, whereas co-expression of SCN5A-WT with SCN5A-R34fs/60 did not.ConclusionsA severe clinical phenotype characterized by fever-induced monomorphic ventricular tachycardia and QT interval prolongation emerged in a toddler with compound heterozygosity involving SCN5A: R34fs/60, and R1195H. Unexpectedly, the 94-amino-acid fusion peptide derived from the R34fs/60 mutation accentuated the late sodium current of R1195H-containing Na(V)1.5 channels in vitro.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.