-
Zhongguo Zhong Yao Za Zhi · Dec 2020
[Material basis and mechanism of Xiao'er Resuqing Oral Liquid on hand, foot and mouth disease based on network pharmacology and molecular docking].
- Ying-Li Xu, Shan-Shan Guo, Xiao-Lan Cui, and Yu-Jing Shi.
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences Beijing 100700, China.
- Zhongguo Zhong Yao Za Zhi. 2020 Dec 1; 45 (23): 5745-5752.
AbstractThis paper aimed to investigate the active components and molecular mechanism of Xiao'er Resuqing Oral Liquid on hand, foot and mouth disease(HFMD) based on network pharmacology and molecular docking methods. The potential active components of 8 herbs in Xiao'er Resuqing Oral Liquid were selected through Traditional Chinese Medicine Systems Pharmacology Database(TCMSP), Batman database and relevant literature consultation. Then related targets for the medicine were analyzed through PubChem and Swiss Target Prediction database, while related targets for HFMD were analyzed through GeneCards platform. The common targets for medicine and disease were put into STRING database to obtain the potential targets of Xiao'er Resuqing Oral Liquid for treatment of HFMD. The Cytoscape software was used to establish the "herbs-components-targets-disease" network. The protein-protein interaction(PPI) network was constructed based on STRING platform and Cytoscape software to screen the core targets. Based on Metascape platform, GO function enrichment analysis and KEGG signal pathway enrichment analysis were carried out. The main active components and potential key targets of Xiao'er Resuqing Oral Liquid were verified by molecular docking with Autodock vina 1.1.2 software. A total of 118 potential active components and 123 potential targets for treatment of HFMD were collected. PPI network indicated a total of 23 key targets, such as AKT1, MAPK1, IL6, VEGFA, EGFR, TNF, HRAS, CCND1, and CXCL8. GO function enrichment analysis results showed that there were 381 GO biological processes, 127 GO cellular components, and 117 GO molecular functions(P<0.01). KEGG enrichment analysis showed that 116 signal pathways were obtained(P<0.01), and the results showed that it was mainly associated with TNF signal pathway, IL-17 signal pathway, inflammatory mediator regulation of TRP channels, and cytokine-cytokine receptor interaction. Molecular docking results showed that the main active components all had a high binding ability with the main potential key targets. This study preliminarily investigated the multi-pathways, multi-targets and multi-components molecular mechanism of Xiao'er Resuqing Oral Liquid for treatment of HFMD, providing theoretical references for further researches on its active components and action mechanism.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.