• J. Natl. Cancer Inst. · Dec 1996

    Risk of basal cell and squamous cell skin cancers after ionizing radiation therapy. For The Skin Cancer Prevention Study Group.

    • M R Karagas, J A McDonald, E R Greenberg, T A Stukel, J E Weiss, J A Baron, and M M Stevens.
    • Department of Community and Family Medicine, Dartmouth Medical School, Hanover, NH 03755-3861, USA.
    • J. Natl. Cancer Inst. 1996 Dec 18; 88 (24): 1848-53.

    BackgroundHuman evidence that ionizing radiation is carcinogenic first came from reports of nonmelanoma skin cancers (NMSCs) on the hands of workers using early radiation devices. An increased risk of NMSC has been observed among uranium miners, radiologists, and individuals treated with x rays in childhood for tinea capitis (ringworm of the scalp) or for thymic enlargement; NMSC is one of the cancers most strongly associated with the atomic bombing of Hiroshima and Nagasaki. Although exposure to ionizing radiation is a known cause of NMSC, it is not yet clear whether therapeutic radiation causes both major histologic types of NMSC, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Additionally, the potentially modifying effects, such as latency, age when treated, and type of treatment, are not well understood.PurposeWe investigated the relative risks of BCC and SCC associated with previous radiation therapy and evaluated these risks in relation to age and time since initial treatment and the medical condition for which radiation therapy was given.MethodsThe study group comprised individual diagnosed with at least one BCC or SCC from January 1980 through February 1986, who were recruited to participate in a skin cancer prevention trial designed to test whether oral beta-carotene supplementation would reduce the risk of new NMSCs. Patients were identified through the dermatology and pathology records of academic medical centers in Hanover, NH; Los Angeles, CA; San Francisco, CA; and Minneapolis, MN. Each participant completed a questionnaire detailing lifetime residence, pigmentary characteristics, occupational and recreational sun exposure, and history of radiation therapy. At enrollment, a study dermatologist assessed skin type (tendency to burn or tan) and extent of actinic skin damage. Participants were followed with an annual dermatologic examination for an average of 4 years. Of the 5232 potentially eligible individuals, 1805 were enrolled in the trial. We excluded 112 patients who reported previous radiation therapy for skin cancer only and three with missing information on whether they were ever treated with radiation therapy, leaving 1690 patients for the analysis. Approximately 4% of the patients died or discontinued participation for other reasons during each study year. We examined time to occurrence of first new histopathologically confirmed BCC and SCC during the follow-up period in relation to history of radiation therapy (for reasons other than NMSC) using a proportional hazards model. A multiple end points survival model was used to compare the rate ratios (RRs) for BCC and SCC. We also used a longitudinal method of analysis to compute the RR of total new BCC and SCC tumors per person per study year associated with radiation therapy. Using this method, we additionally assessed the potential modifying effects of age at treatment, latency, and type of therapy. All P values were derived from two-sided statistical tests of significance.ResultsAmong the participants we studied, 597 developed a new BCC (n = 1553 tumors) and 118 developed a new SCC (n = 179 tumors). The time to first new BCC, but not SCC, was associated with prior radiation therapy (RR = 1.7; 95% confidence interval [CI] = 1.4-2.0 and RR = 1.0; 95% CI = 0.6-1.7, respectively; P = .03 for the difference between the RRs). The RR of total BCC tumors was slightly higher (RR = 2.3; 95% CI = 1.7-3.1), but it was still unity for SCC (RR = 1.0; 95% CI = 0.5-1.9). BCC risk appeared to increase with younger age at exposure and time since initially treated, although these effects were only marginally statistically significant (P for trend = .06 and .07, respectively). Also, risk of BCC was more strongly related to treatment for acne (RR = 3.3; 95% CI = 2.1-5.2) than other conditions.Conclusions And ImplicationsOur data suggest that exposure to therapeutic radiation is associated with BCC but not with SCC.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.