• J. Appl. Physiol. · Jun 2020

    Effects of an allosteric hemoglobin affinity modulator on arterial blood gases and cardiopulmonary responses during normoxic and hypoxic low-intensity exercise.

    • Glenn M Stewart, Steven Chase, Troy J Cross, Courtney M Wheatley-Guy, Michael J Joyner, Timothy Curry, Josh Lehrer-Graiwer, Kobina Dufu, Nicholas E Vlahakis, and Bruce D Johnson.
    • Human Integrative and Environmental Physiology Laboratory, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
    • J. Appl. Physiol. 2020 Jun 1; 128 (6): 1467-1476.

    AbstractNumerous pathophysiological conditions induce hypoxemia-related cardiopulmonary perturbations, decrements in exercise capacity, and debilitating symptoms. Accordingly, this study investigated the efficacy of an allosteric hemoglobin modulator (voxelotor) to enhance arterial oxygen saturation during low-intensity exercise in hypoxia. Eight normal healthy subjects (36 ± 7 yr; 73.8 ± 9.5 kg; 3 women) completed a submaximal cycling test (60 W) under normoxic ([Formula: see text]: 0.21; O2 partial pressure: 144 mmHg) and hypoxic ([Formula: see text]: 0.125; O2 partial pressure: 82 mmHg) conditions before (day 1) and after (day 15) 14 days of oral drug administration. While stationary on a cycle ergometer and during exercise, ratings of perceived exertion (RPE) and dyspnea, oxygen consumption (V̇o2), and cardiac output (Q) were measured noninvasively, while arterial blood pressure (MAP) and blood gases ([Formula: see text], [Formula: see text], and [Formula: see text]) were measured invasively. The 14-day drug administration left shifted the oxygen-hemoglobin dissociation curve (ODC; p50 measured at standard pH and Pco2; day 1: 28.0 ± 2.1 mmHg vs. day 15: 26.1 ± 1.8 mmHg, P < 0.05). RPE, dyspnea, V̇o2, Q, and MAP were not different between day 1 and day 15. [Formula: see text] was similar during normoxia on day 1 and day 15 while stationary but higher during exercise (day 1: 95.2 ± 0.4% vs. day 15: 96.6 ± 0.3%, P < 0.05). [Formula: see text] was higher during hypoxia on day 15 while stationary (day 1: 82.9 ± 3.4% vs. day 15: 90.9 ± 1.8%, P < 0.05) and during exercise (day 1: 73.6 ± 2.5% vs. day 15: 84.8 ± 2.7%, P < 0.01). [Formula: see text] and [Formula: see text]were systematically higher and lower, respectively, after drug (P < 0.01), while the alveolar-arterial oxygen difference was unchanged suggesting hyperventilation contributed to the rise in [Formula: see text]. Oral administration of voxelotor left shifted the ODC and stimulated a mild hyperventilation, leading to improved arterial oxygen saturation without altering V̇o2 and central hemodynamics during rest and low-intensity exercise. This effect was more pronounced during submaximal hypoxic exercise, when arterial desaturation was more evident. Additional studies are needed to determine the effects of voxelotor during maximal exercise and under chronic forms of hypoxia.NEW & NOTEWORTHY In humans, a novel allosteric hemoglobin-oxygen affinity modulator was administered to comprehensively examine the cardiopulmonary consequences of stabilizing a portion of the available hemoglobin in a high-oxygen affinity state during submaximal exercise in normoxia and hypoxia. Oral administration of voxelotor enhanced arterial oxygen saturation during submaximal exercise without altering oxygen consumption and central hemodynamics; however, the partial pressure of arterial carbon dioxide was reduced and the partial pressure of arterial oxygen was increased implying that hyperventilation also contributed to the increase in oxygen saturation. The preservation of arterial oxygen saturation and content was particularly evident during hypoxic submaximal exercise, when arterial desaturation typically occurs, but this did not influence arterial-venous oxygen difference.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.