-
- Tatsuki Matsumoto, Madoka Urushido, Haruna Ide, Masayuki Ishihara, Kazu Hamada-Ode, Yoshiko Shimamura, Koji Ogata, Kosuke Inoue, Yoshinori Taniguchi, Takafumi Taguchi, Taro Horino, Shimpei Fujimoto, and Yoshio Terada.
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University Kohasu, Oko-cho, Nankoku, Japan.
- Plos One. 2015 Jan 1; 10 (5): e0126229.
BackgroundHeat shock protein beta-1 (HSPB1, also known as HSP27) is a small heat shock protein involved in many cellular processes and reportedly protects cells against oxidative stress. Autophagy protects cells from many types of stress and is thought to play a key role in preventing stress in acute kidney injury (AKI). However, little is known about the role of HSPB1 in autophagy and apoptosis in the pathogenesis of AKI.MethodsWe used a rat ischemia/reperfusion AKI model and cultured renal tubular cells as an in vitro model. To elucidate the regulation of HSPB1, we evaluated the promoter activity and expression of HSPB1 in normal rat kidney (NRK)-52E cells in the presence of H2O2. To examine the regulation of autophagy by HSPB1, we established NRK-light chain 3 (NRK-LC3) cells that were stably transfected with a fusion protein of green fluorescent protein and LC3.ResultsThe results of immunohistological examination showed that HSPB1 was expressed in proximal tubule cells after AKI. Real-time quantitative reverse transcription-polymerase chain reaction and western blot analysis showed that HSPB1 messenger RNA and protein expression were upregulated 6-72 h and 12-72 h, respectively, after ischemia/reperfusion injury. HSPB1 promoter activity as well as messenger RNA and protein expression indicated dose-dependent induction by H2O2. HSPB1 overexpression-induced autophagy in NRK-LC3 cells under normoxic conditions was confirmed with confocal microscopy, which revealed the presence of LC3-positive granules. Furthermore, H2O2-induced autophagy was inhibited by the transfection of small interfering RNAs for HSPB1. Overexpression of HSPB1 reduced BAX activation and H2O2-induced apoptosis, as measured by caspase 3 activity and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay.ConclusionsWe showed that HSPB1 expression increased during oxidative stress in AKI. Incremental HSPB1 expression increased autophagic flux and inhibited apoptosis in renal tubular cells. These results indicate that HSPB1 upregulation plays a role in the pathophysiology of AKI.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.