• Eur J Radiol · Sep 2020

    A radiomics model of liver CT to predict risk of hepatic encephalopathy secondary to hepatitis B related cirrhosis.

    • Jin-Ming Cao, Jian-Qiong Yang, Zhi-Qiang Ming, Jia-Long Wu, Li-Qin Yang, Tian-Wu Chen, Rui Li, Jing Ou, Xiao-Ming Zhang, Qi-Wen Mu, Hong-Jun Li, and Jiani Hu.
    • Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Radiology, Nanchong Central Hospital/Second School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China.
    • Eur J Radiol. 2020 Sep 1; 130: 109201.

    PurposeTo build a radiomics model of liver contrast-enhanced computed tomography (CT) to predict hepatic encephalopathy secondary to Hepatitis B related cirrhosis.Materials And MethodsThis study consisted of 304 consecutive patients with first-diagnosed hepatitis B related cirrhosis. 212 and 92 patients were randomly computer-generated into training and testing cohorts, among which 38 and 21 patients endured HE, respectively. 356 radiomics features of liver were extracted from portal venous-phase CT data, and 3 clinical features were collected from medical record. After data were standardized by Z-score, we used least absolute shrinkage and selection operator to choose useful radiomics features. Ultimately, three predictive models including a radiomics model, a clinical model and an integrated model of radiomics and clinical features were built by analysis of R-software. Predictive performance was tested by multivariable logistic regression, and evaluated by area under receiver-operating characteristic curve (AUC), and accuracy.Results19 radiomics features of liver CT were selected. The selected radiomics features and 3 relevant clinical features were applied to develop a radiomics model, a clinical model, and an integrated model of both radiomics and clinical features. The integrated model showed better performance than the radiomics model or clinical model to predict HE (AUC = 0.94 vs. 0.91 or 0.76, and 0.87 vs. 0.86 or 0.73; accuracy = 0.93 vs. 0.89 or 0.83, and 0.83 vs. 0.84 or 0.77) in the training and testing cohorts, respectively.ConclusionThe integrated model of radiomics and clinical features could well predict HE secondary to hepatitis B related cirrhosis.Copyright © 2020 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…