• J. Natl. Cancer Inst. · Feb 2015

    Meta Analysis

    15q12 variants, sputum gene promoter hypermethylation, and lung cancer risk: a GWAS in smokers.

    • Shuguang Leng, Yushi Liu, Joel L Weissfeld, Cynthia L Thomas, Younghun Han, Maria A Picchi, Christopher K Edlund, Randall P Willink, Autumn L Gaither Davis, Kieu C Do, Tomoko Nukui, Xiequn Zhang, Elizabeth A Burki, David Van Den Berg, Marjorie Romkes, W James Gauderman, Richard E Crowell, Yohannes Tesfaigzi, Christine A Stidley, Christopher I Amos, Jill M Siegfried, Frank D Gilliland, and Steven A Belinsky.
    • : Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM (SL, YL, CLT, MAP, RPW, KCD, XZ, EAB, YT, SAB); Department of Epidemiology, Graduate School of Public Health (JLW) and Department of Medicine (TN, MR), University of Pittsburgh, Pittsburgh, PA; Center for Genomic Medicine, Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH (YH, CIA); Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA (CKE, DVDB, WJG, FDG); Department of Pharmacology & Chemical Biology, Hillman Cancer Center of the University of Pittsburgh Medical Center, Pittsburgh, PA (ALGD, JMS); Department of Internal Medicine, University of New Mexico, Albuquerque, NM (REC, CAS); Department of Pharmacology, University of Minnesota, Minneapolis, MN (JMS).
    • J. Natl. Cancer Inst. 2015 Feb 23; 107 (5).

    BackgroundLung cancer is the leading cause of cancer-related mortality worldwide. Detection of promoter hypermethylation of tumor suppressor genes in exfoliated cells from the lung provides an assessment of field cancerization that in turn predicts lung cancer. The identification of genetic determinants for this validated cancer biomarker should provide novel insights into mechanisms underlying epigenetic reprogramming during lung carcinogenesis.MethodsA genome-wide association study using generalized estimating equations and logistic regression models was conducted in two geographically independent smoker cohorts to identify loci affecting the propensity for cancer-related gene methylation that was assessed by a 12-gene panel interrogated in sputum. All statistical tests were two-sided.ResultsTwo single nucleotide polymorphisms (SNPs) at 15q12 (rs73371737 and rs7179575) that drove gene methylation were discovered and replicated with rs73371737 reaching genome-wide significance (P = 3.3×10(-8)). A haplotype carrying risk alleles from the two 15q12 SNPs conferred 57% increased risk for gene methylation (P = 2.5×10(-9)). Rs73371737 reduced GABRB3 expression in lung cells and increased risk for smoking-induced chronic mucous hypersecretion. Furthermore, subjects with variant homozygote of rs73371737 had a two-fold increase in risk for lung cancer (P = .0043). Pathway analysis identified DNA double-strand break repair by homologous recombination (DSBR-HR) as a major pathway affecting susceptibility for gene methylation that was validated by measuring chromatid breaks in lymphocytes challenged by bleomycin.ConclusionsA functional 15q12 variant was identified as a risk factor for gene methylation and lung cancer. The associations could be mediated by GABAergic signaling that drives the smoking-induced mucous cell metaplasia. Our findings also substantiate DSBR-HR as a critical pathway driving epigenetic gene silencing.© The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.