• Pediatr Crit Care Me · Jan 2022

    Oxygenation Defects, Ventilatory Ratio, and Mechanical Power During Severe Pediatric Acute Respiratory Distress Syndrome: Longitudinal Time Sequence Analyses in a Single-Center Retrospective Cohort.

    • François Proulx, Guillaume Emeriaud, Tine François, Jean-Sébastien Joyal, Nicolas Nardi, Atsushi Kawaguchi, Philippe Jouvet, and Michaël Sauthier.
    • Division of Pediatric Intensive Care, Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Montreal, QC, Canada.
    • Pediatr Crit Care Me. 2022 Jan 1; 23 (1): 223322-33.

    ObjectivesOur understanding of pediatric acute respiratory distress syndrome is based on information from studies reporting intermittent, serial respiratory data. We have analyzed a high-resolution, longitudinal dataset that incorporates measures of hypoxemia severity, metrics of lung mechanics, ventilatory ratio, and mechanical power and examined associations with survival after the onset of pediatric acute respiratory distress syndrome.DesignSingle-center retrospective cohort, 2013-2018.SettingTertiary surgical/medical PICU.PatientsSeventy-six cases of severe pediatric acute respiratory distress syndrome, determined according to the Pediatric Acute Lung Injury Consensus Conference criteria.InterventionsNone.Measurements And Main ResultsThe high-resolution database included continuous monitoring of ventilatory data (0.03 Hz) for up to 14 days after the diagnosis of pediatric acute respiratory distress syndrome or until extubation or death (n = 26). In the 12,128 hours of data during conventional mechanical ventilation, we used generalized estimating equations to compare groups, accounting for any effect of time. We identified an association between survival and faster rate of improvement in delta pressure (peak inspiratory pressure minus positive end-expiratory pressure; p = 0.028). Nonsurvival was associated with higher daily Pediatric Logistic Organ Dysfunction-2 scores (p = 0.005) and more severe hypoxemia metrics (p = 0.005). Mortality was also associated with the following respiratory/pulmonary metrics (mean difference [95% CI]): positive end-expiratory pressure level (+2.0 cm H2O [0.8-3.2 cm H2O]; p = 0.001), peak inspiratory pressure level (+3.0 cm H2O [0.5-5.5 cm H2O]; p = 0.022), respiratory rate (z scores +2.2 [0.9-3.6]; p = 0.003], ventilatory ratio (+0.41 [0.28-0.55]; p = 0.0001], and mechanical power (+5 Joules/min [1-10 Joules/min]; p = 0.013). Based on generalized linear mixed modeling, mechanical power remained associated with mortality after adjustment for normal respiratory rate, age, and daily Pediatric Logistic Organ Dysfunction-2 score (+3 Joules/breath [1-6 Joules/breath]; p = 0.009).ConclusionsMortality after severe pediatric acute respiratory distress syndrome is associated with the severity of organ dysfunction, oxygenation defects, and pulmonary metrics including dead space and theoretical mechanical energy load.Copyright © 2021 by the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…