• Investigative radiology · May 2013

    Correlation of simultaneously acquired diffusion-weighted imaging and 2-deoxy-[18F] fluoro-2-D-glucose positron emission tomography of pulmonary lesions in a dedicated whole-body magnetic resonance/positron emission tomography system.

    • Holger Schmidt, Cornelia Brendle, Christina Schraml, Petros Martirosian, Ilja Bezrukov, Jürgen Hetzel, Mark Müller, Alexander Sauter, Claus D Claussen, Christina Pfannenberg, and Nina F Schwenzer.
    • Department of Radiology, Diagnostic and Interventional Radiology, Eberhard Karls University, Hoppe-Seyler-St 3, 72076 Tübingen, Germany.
    • Invest Radiol. 2013 May 1;48(5):247-55.

    ObjectiveHybrid whole-body magnetic resonance/positron emission tomography (MR/PET) systems are a new diagnostic tool enabling the simultaneous acquisition of morphologic and multiple functional data and thus allowing for a diversified characterization of oncological diseases.The aim of this study was to investigate the image and alignment quality of MR/PET in patients with pulmonary lesions and to compare the congruency of the 2 functional measurements of diffusion-weighted imaging (DWI) in MR imaging and 2-deoxy-[18F] fluoro-2-D-glucose (FDG) uptake in PET.Materials And MethodsA total of 15 patients were examined with a routine positron emission tomography/computer tomography (PET/CT) protocol and, subsequently, in a whole-body MR/PET scanner allowing for simultaneous PET and MR data acquisition. The PET and MR image quality was assessed visually using a 4-point score (1, insufficient; 4, excellent). The alignment quality of the rigidly registered PET/CT and MR/PET data sets was investigated on the basis of multiple anatomic landmarks of the lung using a scoring system from 1 (no alignment) to 4 (very good alignment). In addition, the alignment quality of the tumor lesions in PET/CT and MR/PET as well as for retrospective fusion of PET from PET/CT and MR images was assessed quantitatively and was compared between lesions strongly or less influenced by respiratory motion. The correlation of the simultaneously acquired DWI and FDG uptake in the pulmonary masses was analyzed using the minimum and mean apparent diffusion coefficient (ADC min and ADC mean) as well as the maximum and mean standardized uptake value (SUV max and SUV mean), respectively. In addition, the correlation of SUV max from PET/CT data was investigated as well. On lesions 3 cm or greater, a voxelwise analysis of ADC and SUV was performed.ResultsThe visual evaluation revealed excellent image quality of the PET images (mean [SD] score, 3.6 [0.5]) and overall good image quality of DWI (mean [SD] score of 2.5 [0.5] for ADC maps and 2.7 [0.5] for diffusion-weighted images, respectively). The alignment quality of the data sets was very good in both MR/PET and PET/CT without significant differences (overall mean [SD] score of MR/PET, 3.8 [0.4]; PET/CT 3.6 [0.5]). Also, the alignment quality of the tumor lesions showed no significant differences between PET/CT and MR/PET (mean cumulative misalignment of MR/PET, 7.7 mm; PET/CT, 7.0 mm; P = 0.705) but between both modalities and a retrospective fusion (mean cumulative misalignment, 17.1 mm; P = 0.002 and P = 0.008 for PET/CT and MR/PET, respectively). Also, the comparison of the lesions strongly or less influenced by respiratory motion showed significant differences only for the retrospective fusion (21.3 mm vs 11.5 mm, respectively; P = 0.043). The ADC min and SUV max as measures of the cell density and glucose metabolism showed a significant reverse correlation (r = -0.80; P = 0.0006). No significant correlation was found between ADC mean and SUV mean (r = -0.42; P = 0.1392). Also, SUV max from the PET/CT data showed significant reverse correlation to ADC min (r = -0.62; P = 0.019). The voxelwise analysis of 5 pulmonary lesions each showed weak but significant negative correlation between ADC and SUV.ConclusionsExaminations of pulmonary lesions in a simultaneous whole-body MR/PET system provide diagnostic image quality in both modalities. Although DWI and FDG-PET reflect different tissue properties, there may very well be an association between the measures of both methods most probably because of increased cellularity and glucose metabolism of FDG-avid pulmonary lesions. A voxelwise DWI and FDG-PET correlation might provide a more sophisticated spatial characterization of pulmonary lesions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…