• Human brain mapping · Sep 2013

    Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques.

    • R Matthew Hutchison, Thilo Womelsdorf, Joseph S Gati, Stefan Everling, and Ravi S Menon.
    • Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Drive, London, Ontario, Canada.
    • Hum Brain Mapp. 2013 Sep 1; 34 (9): 2154-77.

    AbstractCharacterization of large-scale brain networks using blood-oxygenation-level-dependent functional magnetic resonance imaging is typically based on the assumption of network stationarity across the duration of scan. Recent studies in humans have questioned this assumption by showing that within-network functional connectivity fluctuates on the order of seconds to minutes. Time-varying profiles of resting-state networks (RSNs) may relate to spontaneously shifting, electrophysiological network states and are thus mechanistically of particular importance. However, because these studies acquired data from awake subjects, the fluctuating connectivity could reflect various forms of conscious brain processing such as passive mind wandering, active monitoring, memory formation, or changes in attention and arousal during image acquisition. Here, we characterize RSN dynamics of anesthetized macaques that control for these accounts, and compare them to awake human subjects. We find that functional connectivity among nodes comprising the "oculomotor (OCM) network" strongly fluctuated over time during awake as well as anaesthetized states. For time dependent analysis with short windows (<60 s), periods of positive functional correlations alternated with prominent anticorrelations that were missed when assessed with longer time windows. Similarly, the analysis identified network nodes that transiently link to the OCM network and did not emerge in average RSN analysis. Furthermore, time-dependent analysis reliably revealed transient states of large-scale synchronization that spanned all seeds. The results illustrate that resting-state functional connectivity is not static and that RSNs can exhibit nonstationary, spontaneous relationships irrespective of conscious, cognitive processing. The findings imply that mechanistically important network information can be missed when using average functional connectivity as the single network measure.Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.