• J Clin Med · Aug 2021

    Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using Supervised Machine Learning.

    • Mohammed Sayed, David Riaño, and Jesús Villar.
    • Department of Computer Engineering, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Spain.
    • J Clin Med. 2021 Aug 26; 10 (17).

    BackgroundAcute respiratory distress syndrome (ARDS) is an intense inflammatory process of the lungs. Most ARDS patients require mechanical ventilation (MV). Few studies have investigated the prediction of MV duration over time. We aimed at characterizing the best early scenario during the first two days in the intensive care unit (ICU) to predict MV duration after ARDS onset using supervised machine learning (ML) approaches. Methods: For model description, we extracted data from the first 3 ICU days after ARDS diagnosis from patients included in the publicly available MIMIC-III database. Disease progression was tracked along those 3 ICU days to assess lung severity according to Berlin criteria. Three robust supervised ML techniques were implemented using Python 3.7 (Light Gradient Boosting Machine (LightGBM); Random Forest (RF); and eXtreme Gradient Boosting (XGBoost)) for predicting MV duration. For external validation, we used the publicly available multicenter database eICU. Results: A total of 2466 and 5153 patients in MIMIC-III and eICU databases, respectively, received MV for >48 h. Median MV duration of extracted patients was 6.5 days (IQR 4.4-9.8 days) in MIMIC-III and 5.0 days (IQR 3.0-9.0 days) in eICU. LightGBM was the best model in predicting MV duration after ARDS onset in MIMIC-III with a root mean square error (RMSE) of 6.10-6.41 days, and it was externally validated in eICU with RMSE of 5.87-6.08 days. The best early prediction model was obtained with data captured in the 2nd day. Conclusions: Supervised ML can make early and accurate predictions of MV duration in ARDS after onset over time across ICUs. Supervised ML models might have important implications for optimizing ICU resource utilization and high acute cost reduction of MV.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…