• J. Appl. Physiol. · Mar 2021

    Anatomical variability in the upper tracheobronchial tree: sex-based differences and implications for personalized inhalation therapies.

    • Simoni Christou, Thanasis Chatziathanasiou, Stelios Angeli, Pantelis Koullapis, Fotos Stylianou, Josué Sznitman, Haiwei Henry Guo, and Stavros C Kassinos.
    • Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
    • J. Appl. Physiol. 2021 Mar 1; 130 (3): 678-707.

    AbstractThe morphometry of the large conducting airways is presumed to have a strong effect on the regional deposition of inhaled aerosol particles. Nevertheless, sex-based differences have not been fully quantified and are still largely ignored in designing inhalation therapies. To this end, we retrospectively analyzed high-resolution computed tomography scans for 185 individuals (90 women, 95 men) in the age range of 12-89 yr to determine airway luminal areas, airway lengths, and bifurcation angles. Only subjects free of chronic airway disease were considered. In men, luminal areas of the upper conducting airways were, on average, ∼30%-50% larger when compared with those in women, with the largest differences found in the trachea (289.72 ± 54.25 vs. 193.50 ± 42.37 mm2 for men and women, respectively). The ratio of the largest luminal area in men to the smallest luminal area in women (in any given segment) ranged between 4.5 and 8.6, the largest differences being found in the lobar bronchi. Sex-based differences were minor in the case of bifurcation angles (e.g., average main bifurcation angle: 93.04 ± 9.58° vs. 91.03 ± 9.81° for men and women, respectively), but large intersubject variability was found irrespective of sex (e.g., range of main bifurcation angle: 65.04°-122.01° vs. 69.46°-113.94° for men and women, respectively). Bronchial segments were shorter by ∼5%-20% in women relative to men, the largest differences being located in the upper lobes. False discovery rate analysis revealed statistically significant associations among morphometric measures of the right lung in women (but not in men), suggesting two phenotypes among women that we attribute to the smaller female thoracic volume.NEW & NOTEWORTHY We found significant sex-based morphometric differences in the central airways of healthy men and women that were only mildly attenuated in subsets matched for lung volume. Lumen areas were significantly larger in men (∼30%-50%). Large variability (∼75%-87%) in airway bifurcation angles (60°-122°) was found irrespective of sex. The branching pattern of the right main and right upper bronchi in women (but not in men) follows two phenotypes modulated by lung volume.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.