• J. Appl. Physiol. · Mar 1982

    Partitioning of pulmonary vascular resistance in dogs by arterial and venous occlusion.

    • T S Hakim, R P Michel, and H K Chang.
    • J. Appl. Physiol. 1982 Mar 1; 52 (3): 710-5.

    AbstractWe perfused in situ isolated left lower lung lobes at a steady flow rate in zone 3 condition. When the lobar arterial inflow was suddenly occluded, the arterial pressure (Pa) fell rapidly and then more slowly. When the lobar venous outflow was suddenly occluded, the venous pressure (Pv) rose rapidly and then continued to rise more slowly. The rapid changes in Pa and Pv with inflow and outflow occlusion, respectively, represent the pressure drops across the arterial (delta Pa) and venous (delta Pv) relatively indistensible vessels. The total arteriovenous pressure difference (delta Pt) minus delta Pa + delta Pv gives the pressure drop across the vessels in the middle (delta Pm) that are much more distensible. Serotonin and histamine infusion increased delta Pa and delta Pv, respectively, but left delta Pm unchanged. delta Pa and delta Pv, but not delta Pm, increased as flow rate was increased. The studies with varying flow rate and venous pressures suggested that the arteries and veins became resistant to distension when their transmural pressures exceeded 10--5 Torr, respectively. Under the conditions studied, the middle nonmuscular segment contributed a major fraction of the vascular compliance and less than 16% of the total resistance. The muscular arteries and veins contributed equally to the remaining resistance. We conclude that the arterial and venous occlusion method is a useful technique to describe the resistance and compliance of different segments of the pulmonary vasculature.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.