-
- Mary F McGuire, Madurai Sriram Iyengar, and David W Mercer.
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, TX 77030, USA. mary.f.mcguire@uth.tmc.edu
- J. Investig. Med. 2011 Aug 1; 59 (6): 893-903.
AbstractToday, there is an ever-increasing amount of biological and clinical data available that could be used to enhance a systems-based understanding of disease progression through innovative computational analysis. In this article, we review a selection of published research regarding computational methods, primarily from systems biology, which support translational research from the molecular level to the bedside, with a focus on applications in trauma and critical care. Trauma is the leading cause of mortality in Americans younger than 45 years, and its rapid progression offers both opportunities and challenges for computational analysis of trends in molecular patterns associated with outcomes and therapeutic interventions.This review presents methods and domain-specific examples that may inspire the development of new algorithms and computational methods that use both molecular and clinical data for diagnosis, prognosis, and therapy in disease progression.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.