• Medicine · Dec 2021

    Predicting outcomes after trauma: Prognostic model development based on admission features through machine learning.

    • Kuo-Chang Lee, Tzu-Chieh Lin, Hsiu-Fen Chiang, Gwo-Jiun Horng, Chien-Chin Hsu, Nan-Chun Wu, Hsiu-Chen Su, and Kuo-Tai Chen.
    • Emergency Department, Chi-Mei Medical Center, Tainan, Taiwan.
    • Medicine (Baltimore). 2021 Dec 10; 100 (49): e27753e27753.

    AbstractIn an overcrowded emergency department (ED), trauma surgeons and emergency physicians need an accurate prognostic predictor for critical decision-making involving patients with severe trauma. We aimed to develope a machine learning-based early prognostic model based on admission features and initial ED management.We only recruited patients with severe trauma (defined as an injury severity score >15) as the study cohort and excluded children (defined as patients <16 years old) from a 4-years database (Chi-Mei Medical Center, from January 2015, to December 2018) recording the clinical features of all admitted trauma patients. We considered only patient features that could be determined within the first 2 hours after arrival to the ED. These variables included Glasgow Coma Scale (GCS) score; heart rate; respiratory rate; mean arterial pressure (MAP); prehospital cardiac arrest; abbreviated injury scales (AIS) of head and neck, thorax, and abdomen; and ED interventions (tracheal intubation/tracheostomy, blood product transfusion, thoracostomy, and cardiopulmonary resuscitation). The endpoint for prognostic analyses was mortality within 7 days of admission.We divided the study cohort into the early death group (149 patients who died within 7 days of admission) and non-early death group (2083 patients who survived at >7 days of admission). The extreme Gradient Boosting (XGBoost) machine learning model provided mortality prediction with higher accuracy (94.0%), higher sensitivity (98.0%), moderate specificity (54.8%), higher positive predict value (PPV) (95.4%), and moderate negative predictive value (NPV) (74.2%).We developed a machine learning-based prognostic model that showed high accuracy, high sensitivity, and high PPV for predicting the mortality of patients with severe trauma.Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…