-
- Lulu Schulz, Paulino Ramirez, Adrienne Lemieux, Elias Gonzalez, Travis Thomson, and Bess Frost.
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States; Department of Cell Systems and Anatomy, San Antonio, TX, United States; University of Texas Health San Antonio, San Antonio, TX, United States.
- Neuroscience. 2023 May 10; 518: 101111101-111.
AbstractAlzheimer's disease and other tauopathies are neurodegenerative disorders pathologically defined by aggregated forms of tau protein in the brain. While synaptic degradation is a well-established feature of tau-induced neurotoxicity, the underlying mechanisms of how pathogenic forms of tau drive synaptic dysfunction are incompletely understood. Synaptic function and subsequent memory consolidation are dependent upon synaptic plasticity, the ability of synapses to adjust their structure and strength in response to changes in activity. The activity regulated cytoskeleton associated protein ARC acts in the nucleus and at postsynaptic densities to regulate various forms of synaptic plasticity. ARC harbors a retrovirus-like Gag domain that facilitates ARC multimerization and capsid formation. Trans-synaptic transfer of RNA-containing ARC capsids is required for synaptic plasticity. While ARC is elevated in brains of patients with Alzheimer's disease and genetic variants in ARC increase susceptibility to Alzheimer's disease, mechanistic insight into the role of ARC in Alzheimer's disease is lacking. Using a Drosophila model of tauopathy, we find that pathogenic tau significantly increases multimeric species of the protein encoded by the Drosophila homolog of ARC, Arc1, in the adult fly brain. We find that Arc1 is elevated within nuclei and the neuropil of tau transgenic Drosophila, but does not localize to synaptic vesicles or presynaptic terminals. Lastly, we find that genetic manipulation of Arc1 modifies tau-induced neurotoxicity, suggesting that tau-induced Arc1 elevation mediates neurodegeneration. Taken together, our results suggest that ARC elevation in human Alzheimer's disease is a consequence of tau pathology and is a causal factor contributing to neuronal death.Published by Elsevier Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.