• Neurocritical care · Oct 2022

    The Cerebrospinal Fluid Proteomic Response to Traumatic and Nontraumatic Acute Brain Injury: A Prospective Study.

    • Carlos A Santacruz, Jean-Louis Vincent, Jorge Duitama, Edwin Bautista, Virginie Imbault, Michaël Bruneau, Jacques Creteur, Serge Brimioulle, David Communi, and Fabio S Taccone.
    • Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.
    • Neurocrit Care. 2022 Oct 1; 37 (2): 463-470.

    BackgroundQuantitative analysis of ventricular cerebrospinal fluid (vCSF) proteins following acute brain injury (ABI) may help identify pathophysiological pathways and potential biomarkers that can predict unfavorable outcome.MethodsIn this prospective proteomic analysis study, consecutive patients with severe ABI expected to require intraventricular catheterization for intracranial pressure (ICP) monitoring for at least 5 days and patients without ABI admitted for elective clipping of an unruptured cerebral aneurysm were included. vCSF samples were collected within the first 24 h after ABI and ventriculostomy insertion and then every 24 h for 5 days. In patients without ABI, a single vCSF sample was collected at the time of elective clipping. Data-independent acquisition and sequential window acquisition of all theoretical spectra (SWATH) mass spectrometry were used to compare differences in protein expression in patients with ABI and patients without ABI and in patients with traumatic and nontraumatic ABI. Differences in protein expression according to different ICP values, intensive care unit outcome, subarachnoid hemorrhage (SAH) versus traumatic brain injury (TBI), and good versus poor 3-month functional status (assessed by using the Glasgow Outcome Scale) were also evaluated. vCSF proteins with significant differences between groups were compared by using linear models and selected for gene ontology analysis using R Language and the Panther database.ResultsWe included 50 patients with ABI (SAH n = 23, TBI n = 15, intracranial hemorrhage n = 6, ischemic stroke n = 3, others n = 3) and 12 patients without ABI. There were significant differences in the expression of 255 proteins between patients with and without ABI (p < 0.01). There were intraday and interday differences in expression of seven proteins related to increased inflammation, apoptosis, oxidative stress, and cellular response to hypoxia and injury. Among these, glial fibrillary acidic protein expression was higher in patients with ABI with severe intracranial hypertension (ICH) (ICP ≥ 30 mm Hg) or death compared to those without (log 2 fold change: + 2.4; p < 0.001), suggesting extensive primary astroglial injury or death. There were differences in the expression of 96 proteins between patients with traumatic and nontraumatic ABI (p < 0.05); intraday and interday differences were observed for six proteins related to structural damage, complement activation, and cholesterol metabolism. Thirty-nine vCSF proteins were associated with an increased risk of severe ICH (ICP ≥ 30 mm Hg) in patients with traumatic compared with nontraumatic ABI (p < 0.05). No significant differences were found in protein expression between patients with SAH versus TBI or between those with good versus poor 3-month Glasgow Outcome Scale score.ConclusionsDysregulated vCSF protein expression after ABI may be associated with an increased risk of severe ICH and death.© 2022. Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.