-
- Daniel Laxar, Magdalena Eitenberger, Mathias Maleczek, Alexandra Kaider, Fabian Peter Hammerle, and Oliver Kimberger.
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria.
- Bmc Med. 2023 Sep 19; 21 (1): 359359.
BackgroundDuring the COVID-19 pandemic, a variety of clinical decision support systems (CDSS) were developed to aid patient triage. However, research focusing on the interaction between decision support systems and human experts is lacking.MethodsThirty-two physicians were recruited to rate the survival probability of 59 critically ill patients by means of chart review. Subsequently, one of two artificial intelligence systems advised the physician of a computed survival probability. However, only one of these systems explained the reasons behind its decision-making. In the third step, physicians reviewed the chart once again to determine the final survival probability rating. We hypothesized that an explaining system would exhibit a higher impact on the physicians' second rating (i.e., higher weight-on-advice).ResultsThe survival probability rating given by the physician after receiving advice from the clinical decision support system was a median of 4 percentage points closer to the advice than the initial rating. Weight-on-advice was not significantly different (p = 0.115) between the two systems (with vs without explanation for its decision). Additionally, weight-on-advice showed no difference according to time of day or between board-qualified and not yet board-qualified physicians. Self-reported post-experiment overall trust was awarded a median of 4 out of 10 points. When asked after the conclusion of the experiment, overall trust was 5.5/10 (non-explaining median 4 (IQR 3.5-5.5), explaining median 7 (IQR 5.5-7.5), p = 0.007).ConclusionsAlthough overall trust in the models was low, the median (IQR) weight-on-advice was high (0.33 (0.0-0.56)) and in line with published literature on expert advice. In contrast to the hypothesis, weight-on-advice was comparable between the explaining and non-explaining systems. In 30% of cases, weight-on-advice was 0, meaning the physician did not change their rating. The median of the remaining weight-on-advice values was 50%, suggesting that physicians either dismissed the recommendation or employed a "meeting halfway" approach. Newer technologies, such as clinical reasoning systems, may be able to augment the decision process rather than simply presenting unexplained bias.© 2023. BioMed Central Ltd., part of Springer Nature.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.