• Shock · Jan 2024

    SINGLE-CELL TRANSCRIPTOME ANALYSIS IN HEALTH AND DISEASE.

    • Punit Bhattachan and Marc G Jeschke.
    • Shock. 2024 Jan 1; 61 (1): 192719-27.

    AbstractThe analysis of the single-cell transcriptome has emerged as a powerful tool to gain insights on the basic mechanisms of health and disease. It is widely used to reveal the cellular diversity and complexity of tissues at cellular resolution by RNA sequencing of the whole transcriptome from a single cell. Equally, it is applied to discover an unknown, rare population of cells in the tissue. The prime advantage of single-cell transcriptome analysis is the detection of stochastic nature of gene expression of the cell in tissue. Moreover, the availability of multiple platforms for the single-cell transcriptome has broadened its approaches to using cells of different sizes and shapes, including the capture of short or full-length transcripts, which is helpful in the analysis of challenging biological samples. And with the development of numerous packages in R and Python, new directions in the computational analysis of single-cell transcriptomes can be taken to characterize healthy versus diseased tissues to obtain novel pathological insights. Downstream analysis such as differential gene expression analysis, gene ontology term analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, cell-cell interaction analysis, and trajectory analysis has become standard practice in the workflow of single-cell transcriptome analysis to further examine the biology of different cell types. Here, we provide a broad overview of single-cell transcriptome analysis in health and disease conditions currently applied in various studies.Copyright © 2023 by the Shock Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…