• Respiratory care · Mar 2024

    An Individual Barrier Enclosure Actively Removing Aerosols for Airborne Isolation: A Vacuum Tent.

    • Fernando N Vieira, Veronique Masy, Ryan J LaRue, Scott E Laengert, Charles F De Lannoy, Antenor Rodrigues, Michael C Sklar, Nick Lo, Andrew Petrosoniak, Joao Rezende-Neto, and Laurent J Brochard.
    • Mr Vieira and Drs Rodrigues, Sklar, and Brochard are affiliated with Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada; and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada. Dr Masy is affiliated with Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and Division of Pediatric Critical Care, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada. Messrs LaRue and Laengert and Dr de Lannoy are affiliated with McMaster University, Center of Excellence in Protective Equipment and Materials, Hamilton, Ontario, Canada; and McMaster University, Department of Chemical Engineering, Hamilton, Ontario, Canada. Dr Lo is affiliated with Department of Anesthesiology and Pain Service, St. Michael's Hospital, Toronto, Ontario, Canada. Dr Petrosoniak is affiliated with Emergency Physician and Trauma Team, St. Michael's and Department of Medicine, University of Toronto, Ontario, Canada. Dr Rezende-Neto is affiliated with Trauma and Acute Care General Surgery, Department of Surgery, St. Michael's Hospital, Toronto, Ontario, Canada.
    • Respir Care. 2024 Mar 27; 69 (4): 395406395-406.

    BackgroundAerosol barrier enclosure systems have been designed to prevent airborne contamination, but their safety has been questioned. A vacuum tent was designed with active continuous suctioning to minimize risks of aerosol dispersion. We tested its efficacy, risk of rebreathing, and usability on a bench, in healthy volunteers, and in an ergonomic clinical assessment study.MethodsFirst, a manikin with airway connected to a breathing simulator was placed inside the vacuum tent to generate active breathing, cough, and CO2 production; high-flow nasal cannula (HFNC) was applied in the manikin's nares. Negative pressure was applied in the vacuum tent's apex port using wall suction. Fluorescent microparticles were aerosolized in the vacuum tent for qualitative assessment. To quantify particles inside and around vacuum tent (aerosol retention), an airtight aerosol chamber with aerosolized latex microparticles was used. The vacuum tent was tested on healthy volunteers breathing with and without HFNC. Last, its usability was assessed in 5 subjects by 5 different anesthesiologists for delivery of full anesthesia, including intubation and extubation.ResultsThe vacuum tent was adjusted until no leak was visualized using fluorescent particles. The efficacy in retaining microparticles was confirmed quantitatively. CO2 accumulation inside the vacuum tent showed an inverse correlation with the suction flow in all conditions (normal breathing and HFNC 30 or 60 L/min) in bench and healthy volunteers. Particle removal efficacy and safe breathing conditions (CO2, temperature) were reached when suctioning was at least 60 L/min or 20 L/min > HFNC flow. Five subjects were successfully intubated and anesthetized without ergonomic difficulties and with minimal interference with workflow and an excellent overall assessment by the anesthesiologists.ConclusionsThe vacuum tent effectively minimized aerosol dispersion. Its continuous suction system set at a high suction flow was crucial to avoid the spread of aerosol particles and CO2 rebreathing.Copyright © 2024 by Daedalus Enterprises.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.