• Annals of medicine · Dec 2024

    Non-invasive prediction nomogram for predicting significant fibrosis in patients with metabolic-associated fatty liver disease: a cross-sectional study.

    • Fan Zhang, Yan Han, Yonghua Mao, Guojun Zheng, Longgen Liu, and Wenjian Li.
    • Department of Endocrinology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
    • Ann. Med. 2024 Dec 1; 56 (1): 23377392337739.

    Background And AimThis study aims to validate the efficacy of the conventional non-invasive score in predicting significant fibrosis in metabolic-associated fatty liver disease (MAFLD) and to develop a non-invasive prediction model for MAFLD.MethodsThis cross-sectional study was conducted among 7701 participants with MAFLD from August 2018 to December 2023. All participants were divided into a training cohort and a validation cohort. The study compared different subgroups' demographic, anthropometric, and laboratory examination indicators and conducted logistic regression analysis to assess the correlation between independent variables and liver fibrosis. Nomograms were created using the logistic regression model. The predictive values of noninvasive models and nomograms were evaluated using receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA).ResultsFour nomograms were developed for the quantitative analysis of significant liver fibrosis risk based on the multivariate logistic regression analysis results. The nomogram's area under ROC curves (AUC) was 0.710, 0.714, 0.748, and 0.715 in overall MAFLD, OW-MAFLD, Lean-MAFLD, and T2DM-MAFLD, respectively. The nomogram had a higher AUC in all MAFLD participants and OW-MAFLD than the other non-invasive scores. The DCA curve showed that the net benefit of each nomogram was higher than that of APRI and FIB-4. In the validation cohort, the AUCs of the nomograms were 0.722, 0.750, 0.719, and 0.705, respectively.ConclusionAPRI, FIB-4, and NFS performed poorly predicting significant fibrosis in patients with MAFLD. The new model demonstrated improved diagnostic accuracy and clinical applicability in identifying significant fibrosis in MAFLD.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.