• Exp Brain Res · Nov 2013

    Excitotoxic injury to thoracolumbar gray matter alters sympathetic activation and thermal pain sensitivity.

    • Charles J Vierck, Christopher D King, Sara A Berens, and Robert P Yezierski.
    • Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA, vierck@mbi.ufl.edu.
    • Exp Brain Res. 2013 Nov 1;231(1):19-26.

    AbstractStudies of humans, monkeys and rodents have implicated combined gray and white matter damage as important for development of chronic pain following spinal cord injury (SCI). Below-level chronic pain and hyperalgesia following injury to the spinal white matter, including the spinothalamic tract (STT), can be enhanced by excitotoxic influences within the gray matter at the site of SCI. Also, excitotoxic injury of thoracic gray matter without interruption of the STT results in below-level heat hyperalgesia. The present study evaluates the possibility that thoracolumbar gray matter injury increases sensitivity to nociceptive heat stimulation by altering spinal sympathetic outflow. Thermal preferences of rats for heat (45 °C) versus cold (15 °C) were evaluated before and after thoracolumbar injections of quisqualic acid (QUIS). A pre-injury preference for heat changed to a post-injury preference for cold. Systemic activation of the sympathetic nervous system by restraint stress decreased the heat preference pre-injury and increased the cold preference post-injury. The heat aversive effect of stress was magnified and prolonged post-injury, compared to pre-injury. Also, peripheral sympathetic activation by nociceptive stimulation was evaluated pre- and post-injury by measuring thermal transfer through a hindpaw during stimulation with 44.5 °C. Skin temperature recordings revealed enhanced sympathetic activation by nociceptive heat stimulation following spinal QUIS injury. However, increased sympathetic activation with peripheral vasoconstriction should enhance cold aversion, in contrast to the observed increase in heat aversion. Thus, peripheral sympathetic vasoconstriction can be ruled out as a mechanism for heat hyperalgesia following excitotoxic gray matter injury.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.