• J. Korean Med. Sci. · Apr 2024

    Multicenter Study

    Evaluating Linkage Quality of Population-Based Administrative Data for Health Service Research.

    • Ji-Woo Kim, Hyojung Choi, Hyun Jeung Lim, Miae Oh, and Jae Joon Ahn.
    • Big Data Linkage Division, Health Insurance Review & Assessment Service, Wonju, Korea.
    • J. Korean Med. Sci. 2024 Apr 15; 39 (14): e127e127.

    BackgroundTo overcome the limitations of relying on data from a single institution, many researchers have studied data linkage methodologies. Data linkage includes errors owing to legal issues surrounding personal information and technical issues related to data processing. Linkage errors affect selection bias, and external and internal validity. Therefore, quality verification for each connection method with adherence to personal information protection is an important issue. This study evaluated the linkage quality of linked data and analyzed the potential bias resulting from linkage errors.MethodsThis study analyzed claims data submitted to the Health Insurance Review and Assessment Service (HIRA DATA). The linkage errors of the two deterministic linkage methods were evaluated based on the use of the match key. The first deterministic linkage uses a unique identification number, and the second deterministic linkage uses the name, gender, and date of birth as a set of partial identifiers. The linkage error included in this deterministic linkage method was compared with the absolute standardized difference (ASD) of Cohen's according to the baseline characteristics, and the linkage quality was evaluated through the following indicators: linked rate, false match rate, missed match rate, positive predictive value, sensitivity, specificity, and F1-score.ResultsFor the deterministic linkage method that used the name, gender, and date of birth as a set of partial identifiers, the true match rate was 83.5 and the missed match rate was 16.5. Although there was bias in some characteristics of the data, most of the ASD values were less than 0.1, with no case greater than 0.5. Therefore, it is difficult to determine whether linked data constructed with deterministic linkages have substantial differences.ConclusionThis study confirms the possibility of building health and medical data at the national level as the first data linkage quality verification study using big data from the HIRA. Analyzing the quality of linkages is crucial for comprehending linkage errors and generating reliable analytical outcomes. Linkers should increase the reliability of linked data by providing linkage error-related information to researchers. The results of this study will serve as reference data to increase the reliability of multicenter data linkage studies.© 2024 The Korean Academy of Medical Sciences.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.