• Annals of medicine · Dec 2024

    Review

    Machine learning in infectious diseases: potential applications and limitations.

    • Ahmad Z Al Meslamani, Isidro Sobrino, and José de la Fuente.
    • College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates.
    • Ann. Med. 2024 Dec 1; 56 (1): 23628692362869.

    AbstractInfectious diseases are a major threat for human and animal health worldwide. Artificial Intelligence (AI) combined algorithms including Machine Learning and Big Data analytics have emerged as a potential solution to analyse diverse datasets and face challenges posed by infectious diseases. In this commentary we explore the potential applications and limitations of ML to management of infectious disease. It explores challenges in key areas such as outbreak prediction, pathogen identification, drug discovery, and personalized medicine. We propose potential solutions to mitigate these hurdles and applications of ML to identify biomolecules for effective treatment and prevention of infectious diseases. In addition to use of ML for management of infectious diseases, potential applications are based on catastrophic evolution events for the identification of biomolecular targets to reduce risks for infectious diseases and vaccinomics for discovery and characterization of vaccine protective antigens using intelligent Big Data analytics techniques. These considerations set a foundation for developing effective strategies for managing infectious diseases in the future.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…