• Curr Med Res Opin · Sep 2024

    Review

    Recent progress in artificial intelligence and machine learning for novel diabetes mellitus medications development.

    • Qi Guo, Bo Fu, Yuan Tian, Shujun Xu, and Xin Meng.
    • School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, P. R. China.
    • Curr Med Res Opin. 2024 Sep 1; 40 (9): 148314931483-1493.

    AbstractDiabetes mellitus, stemming from either insulin resistance or inadequate insulin secretion, represents a complex ailment that results in prolonged hyperglycemia and severe complications. Patients endure severe ramifications such as kidney disease, vision impairment, cardiovascular disorders, and susceptibility to infections, leading to significant physical suffering and imposing substantial socio-economic burdens. This condition has evolved into an increasingly severe health crisis. There is an urgent need to develop new treatments with improved efficacy and fewer adverse effects to meet clinical demands. However, novel drug development is costly, time-consuming, and often associated with side effects and suboptimal efficacy, making it a major challenge. Artificial Intelligence (AI) and Machine Learning (ML) have revolutionized drug development across its comprehensive lifecycle, spanning drug discovery, preclinical studies, clinical trials, and post-market surveillance. These technologies have significantly accelerated the identification of promising therapeutic candidates, optimized trial designs, and enhanced post-approval safety monitoring. Recent advances in AI, including data augmentation, interpretable AI, and integration of AI with traditional experimental methods, offer promising strategies for overcoming the challenges inherent in AI-based drug discovery. Despite these advancements, there exists a notable gap in comprehensive reviews detailing AI and ML applications throughout the entirety of developing medications for diabetes mellitus. This review aims to fill this gap by evaluating the impact and potential of AI and ML technologies at various stages of diabetes mellitus drug development. It does that by synthesizing current research findings and technological advances so as to effectively control diabetes mellitus and mitigate its far-reaching social and economic impacts. The integration of AI and ML promises to revolutionize diabetes mellitus treatment strategies, offering hope for improved patient outcomes and reduced healthcare burdens worldwide.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.