• Rev Assoc Med Bras (1992) · Jan 2024

    Detecting pediatric appendicular fractures using artificial intelligence.

    • Nezih Kavak, Rasime Pelin Kavak, Bülent Güngörer, Berna Turhan, Sümeyya Duran Kaymak, Evrim Duman, and Serdar Çelik.
    • Etlik City Hospital, Department of Emergency - Ankara, Turkey.
    • Rev Assoc Med Bras (1992). 2024 Jan 1; 70 (9): e20240523e20240523.

    ObjectiveThe primary objective was to assess the diagnostic accuracy of a deep learning-based artificial intelligence model for the detection of acute appendicular fractures in pediatric patients presenting with a recent history of trauma to the emergency department. The secondary goal was to examine the effect of assistive support on the emergency doctor's ability to detect fractures.MethodsThe dataset was 5,150 radiographs of which 850 showed fractures, while 4,300 radiographs did not show any fractures. The process utilized 4,532 (88%) radiographs, inclusive of both fractured and non-fractured radiographs, in the training phase. Subsequently, 412 (8%) radiographs were appraised during validation, and 206 (4%) were set apart for the testing phase. With and without artificial intelligence assistance, the emergency doctor reviewed another set of 2,000 radiographs (400 fractures and 600 non-fractures each) for labeling in the second test.ResultsThe artificial intelligence model showed a mean average precision 50 of 89%, a specificity of 92%, a sensitivity of 90%, and an F1 score of 90%. The confusion matrix revealed that the model trained with artificial intelligence achieved accuracies of 93 and 95% in detecting fractures, respectively. Artificial intelligence assistance improved the reading sensitivity from 93.7% (without assistance) to 97.0% (with assistance) and the reading accuracy from 88% (without assistance) to 94.9% (with assistance).ConclusionA deep learning-based artificial intelligence model has proven to be highly effective in detecting fractures in pediatric patients, enhancing the diagnostic capabilities of emergency doctors through assistive support.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.