• Am. J. Med. Sci. · Sep 2024

    miRNA-105-5p regulates the histone deacetylase HDAC2 through FOXG1 to affect the malignant biological behavior of triple-negative breast cancer cells.

    • Li Wang, Zaoxiu Hu, Han Bai, Li Chang, Ceshi Chen, and Wenhui Li.
    • Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650000, Yunnan, China.
    • Am. J. Med. Sci. 2024 Sep 21.

    BackgroundTriple-negative breast cancer (TNBC) is a specific subtype of breast cancer (BC). Some potential molecular targets have been identified, and miR-105-5p was found to be abnormally expressed in TNBC tissues.ObjectiveThe objective of this study was to probe the effect of miR-105-5p on TNBC via FOXG1/HDAC2-mediated acetylation.MethodsAn animal model of TNBC was established by injecting BC cells into the axillary area of nude mice. The levels of miR-105-5p, FOXG1, HDAC2, Bcl-2, Bax, and Ki67 were detected via RT‒qPCR, Western blotting and immunohistochemistry. Flow cytometry, CCK-8, Transwell and colony formation assays were used to measure apoptosis, proliferation and migration, respectively. Total histone acetylation levels were measured by ELISA. The binding of FOXG1 to HDAC2 was detected by co-immunoprecipitation. The binding relationship between miR-105-5p and FOXG1 was verified using a dual-luciferase reporter gene assay.ResultsIn this study, miR-105-5p and HDAC2 were highly expressed in the MDA-MB-231 and BT-549 BC cell lines, whereas FOXG1 was expressed at low levels. The inhibition of miR-105-5p inhibited the proliferation and migration of MDA-MB-231 and BT-549 cells and promoted their apoptosis. Bioinformatics analysis revealed that miR-105-5p and FOXG1 had a negative targeting regulatory relationship. FOXG1 overexpression had a similar effect on cancer cells as the inhibition of miR-105-5p. Moreover, experiments revealed that FOXG1 and HDAC2 could bind to each other and that HDAC2 overexpression or treatment with the histone acetyltransferase inhibitor Garcinol weakened the effect of FOXG1 overexpression. In addition, FOXG1 knockdown inhibited the effect of the miR-105-5p inhibitor, while Garcinol treatment further enhanced the effect of FOXG1 knockdown, inhibited histone acetylation, promoted the proliferation and migration of cancer cells, and inhibited apoptosis. Moreover, the in vivo results confirmed the in vitro results.ConclusionmiR-105-5p promotes HDAC2 expression by reducing FOXG1, inhibits histone acetylation, and aggravates the malignant biological behavior of TNBC cells.Copyright © 2024. Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.