• Annals of medicine · Dec 2024

    Artificial intelligence-enhanced infrared thermography as a diagnostic tool for thyroid malignancy detection.

    • Panpicha Chantasartrassamee, Boonsong Ongphiphadhanakul, Ronnarat Suvikapakornkul, Panus Binsirawanich, and Chutintorn Sriphrapradang.
    • Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
    • Ann. Med. 2024 Dec 1; 56 (1): 24258262425826.

    IntroductionThyroid nodules are common, and investigation is crucial for excluding malignancy. Increased intranodular vascularity is frequently observed in malignant tumors, which can be detected through increased skin surface temperatures using noninvasive infrared thermography. We aimed to develop a diagnostic tool for thyroid cancer using infrared thermal images combined with an artificial intelligence (AI) algorithm.MethodsWe conducted a prospective cross-sectional study involving participants with thyroid nodules undergoing thyroid surgery. Infrared thermal images were collected using a thermal camera on the day prior to surgery. In combination with the final thyroid pathological reports, we utilized a machine learning model based on the pre-trained ResNet50V2 model, a convolutional neural network, to evaluate diagnostic accuracy for malignancy diagnosis.ResultsThe study included 98 participants, 58 with malignant thyroid nodules and 40 with benign thyroid nodules, as determined by pathological results. The AI-enhanced infrared thermal image analyses demonstrated good performance in distinguishing between benign and malignant thyroid nodules, achieving an accuracy of 75% and a sensitivity of 78%. These parameters were slightly lower than those of the AI-model predictor that integrated current practice using preoperative thyroid ultrasound findings and cytological results, yielding an accuracy of 81% and a sensitivity of 84%.ConclusionsThe infrared thermal images, assisted by an AI model, exhibit good performance in distinguishing thyroid malignancy from benign nodules. This imaging modality has great potential to be used as a noninvasive screening tool for adjunct evaluation of thyroid nodules.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…