• Annals of medicine · Dec 2024

    Integrating transcriptomic data and digital pathology for NRG-based prediction of prognosis and therapy response in gastric cancer.

    • Qiuyan Sun, Tan Li, Zheng Wei, Zhiyi Ye, Xu Zhao, and Jingjing Jing.
    • Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
    • Ann. Med. 2024 Dec 1; 56 (1): 24267582426758.

    BackgroundCancer is characterized by its ability to resist cell death, and emerging evidence suggests a potential correlation between non-apoptotic regulated cell death (RCD), tumor progression, and therapy response. However, the prognostic significance of non-apoptotic RCD-related genes (NRGs) and their relationships with immune response in gastric cancer (GC) remain unclear.MethodsIn this study, RNA-seq gene expression and clinical information of GC patients were acquired from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Cox and LASSO regression analyses were used to construct the NRG signature. Moreover, we developed a deep learning model based on ResNet50 to predict the NRG signature from digital pathology slides. The expression of signature hub genes was validated using real-time quantitative PCR and single-cell RNA sequencing data.ResultsWe identified 13 NRGs as signature genes for predicting the prognosis of patients with GC. The high-risk group, characterized by higher NRG scores, demonstrated a shorter overall survival rate, increased immunosuppressive cell infiltration, and immune dysfunction. Moreover, associations were observed between the NRG signature and chemotherapeutic drug responsiveness, as well as immunotherapy effectiveness in GC patients. Furthermore, the deep learning model effectively stratified GC patients based on the NRG signature by leveraging morphological variances, showing promising results for the classification of GC patients. Validation experiments demonstrated that the expression level of SERPINE1 was significantly upregulated in GC, while the expression levels of GPX3 and APOD were significantly downregulated.ConclusionThe NRG signature and its deep learning model have significant clinical implications, highlighting the importance of individualized treatment strategies based on GC subtyping. These findings provide valuable insights for guiding clinical decision-making and treatment approaches for GC.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.