-
Respir Physiol Neurobiol · Feb 2006
Comparative Study Clinical TrialThe ventilatory response to carbon dioxide and sustained hypoxia is enhanced after episodic hypoxia in OSA patients.
- Bradley Khodadadeh, M Safwan Badr, and Jason H Mateika.
- John D. Dingell Veterans Administration Medical Center, 4646 John R (11R), Room 4308, Detroit, MI 48201, USA.
- Respir Physiol Neurobiol. 2006 Feb 28;150(2-3):122-34.
AbstractOur primary hypothesis was that the acute ventilatory response to carbon dioxide in the presence of sustained hypoxia {VRCO2 (hypoxia)} or hyperoxia {VRCO2 (hyperoxia)} would increase in subjects with obstructive sleep apnea (OSA) after exposure to episodic hypoxia. Secondarily, we hypothesized that chronic (i.e. years) exposure to episodic hypoxia, a hallmark of OSA, would facilitate persistent augmentation of respiratory activity (i.e. long-term facilitation) after acute (i.e. minutes) exposure to episodic hypoxia. Nine healthy males with OSA that were healthy otherwise completed a series of rebreathing trials before and after exposure to eight 4 min episodes of hypoxia. On a separate occasion, the rebreathing trials were repeated before and after exposure to atmospheric air for a duration equivalent to the episodic hypoxia protocol (i.e. sham episodic hypoxia). During the rebreathing trials, subjects initially hyperventilated to reduce the partial pressure of carbon dioxide (P(ET)CO2) below 25 Torr. Subjects then rebreathed from a bag containing a normocapnic (42 Torr), low (50 Torr) or high oxygen gas mixture (140 Torr). During the trials, P(ET)CO2 increased while the selected level of oxygen was maintained. The point at which ventilation began to rise in a linear fashion as P(ET)CO2 increased was the ventilatory threshold. The ventilatory response below and above the threshold was determined. The results showed that the VRCO2 (hypoxia) and the VRCO2 (hyperoxia) was increased after exposure to episodic hypoxia {VRCO2 (hypoxia): 7.9 +/- 1.3 versus 10.5 +/- 1.3, VRCO2 (hyperoxia): 5.9 +/- 1.1 versus 6.7 +/- 1.1 L/min/Torr}. However, only the increase in the VRCO2 (hypoxia) after episodic hypoxia was greater than the increase measured after exposure to sham episodic hypoxia. Long-term facilitation of ventilation, tidal volume and breathing frequency was not evident after episodic hypoxia. We conclude that the VRCO2 (hypoxia) is enhanced after exposure to acute episodic hypoxia and that enhancement of the VRCO2 (hypoxia) occurs even though long-term facilitation is not evident.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.