-
- Osama I I Soliman, Sharon W Kirschbaum, Bas M van Dalen, Heleen B van der Zwaan, Babak Mahdavian Delavary, Wim B Vletter, Robert-Jan M van Geuns, Folkert J Ten Cate, and Marcel L Geleijnse.
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands.
- Am. J. Cardiol. 2008 Sep 15;102(6):778-83.
AbstractThe aim of this study was to investigate the accuracy and reproducibility of the quantification of left ventricular (LV) function by real-time 3-dimensional echocardiography (RT3DE) using current state-of-the-art hardware and software. Compared with cardiac magnetic resonance (CMR), previous generations of hardware and software for RT3DE significantly underestimated LV volumes partly because of inherent factors such as limited spatial and temporal resolution. Also, RT3DE volumes were compared with short-axis CMR data, whereas a combined short-axis and long-axis analysis is known to be superior. Twenty-four subjects (mean age 51 +/- 12 years, 17 men) in sinus rhythm and with good to excellent 2-dimensional image quality underwent RT3DE and CMR within 1 day. The acquisition of RT3DE data was done with current state-of-the-art hardware and software. Two blinded experts performed off-line LV volume analysis. Global LV volumes were determined from semiautomated border detection on the basis of endocardial speckle tracking with biplane projections using QLAB version 6.0. Volumes derived by magnetic resonance imaging were quantified from combined short-axis and long-axis series. The volume-rate on RT3DE was 33 +/- 8 Hz (range 19 to 42). Excellent correlations were found (R2 > or = 0.97) between CMR and RT3DE for global LV end-diastolic volume, LV end-systolic volume, the LV ejection fraction, and LV phase volumes (24 phases/cardiac cycle). Bland-Altman analyses showed mean differences of -7.1 ml, -4.2 ml, 0.2%, and -5.8 ml and 95% limits of agreement of +/-19.7 ml, +/-8.3 ml, +/-6.2%, and +/-15.4 ml for global LV end-diastolic volume, LV end-systolic volume, the LV ejection fraction, and LV phase volumes, respectively. Interobserver variability was 5.2% for global LV end-diastolic volume, 6.4% for LV end-systolic volume, and 7.6% for the LV ejection fraction. In conclusion, in patients with good acoustic windows, RT3DE using state-of-the-art technology provides accurate and reproducible measurements of global LV volumes, LV volume changes over time, and the LV ejection fraction.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.