-
- Xiangshao Fang, Wanchun Tang, Shijie Sun, Lei Huang, Yun-Te Chang, Zitong Huang, and Max Harry Weil.
- Weil Institute of Critical Care Medicine, 35100 Bob Hope Dr., Rancho Mirage, CA 92270, USA.
- J. Appl. Physiol. 2006 Oct 1;101(4):1091-6.
AbstractOur group has developed a rat model of cardiac arrest and cardiopulmonary resuscitation (CPR). However, the current rat model uses healthy adult animals. In an effort to more closely reproduce the event of cardiac arrest and CPR in humans with chronic coronary disease, a rat model of coronary artery constriction was investigated during cardiac arrest and CPR. Left coronary artery constriction was induced surgically in anesthetized, mechanically ventilated Sprague-Dawley rats. Echocardiography was used to measure global cardiac performance before surgery and 4 wk postsurgery. Coronary constriction provoked significant decreases in ejection fraction, increases in left ventricular end-diastolic volume, and increases left ventricular end-systolic volume at 4 wk postintervention, just before induction of ventricular fibrillation (VF). After 6 min of untreated VF, CPR was initiated on three groups: 1) coronary artery constriction group, 2) sham-operated group, and 3) control group (without preceding surgery). Defibrillation was attempted after 6 min of CPR. All the animals were resuscitated. Postresuscitation myocardial function as measured by rate of left ventricular pressure increase at 40 mmHg and the rate of left ventricular pressure decline was more significantly impaired and left ventricular end-diastolic pressure was greater in the coronary artery constriction group compared with the sham-operated group and the control group. There were no differences in the total shock energy required for successful resuscitation and duration of survival among the groups. In summary, this rat model of chronic myocardial ischemia was associated with ventricular remodeling and left ventricular myocardial dysfunction 4 wk postintervention and subsequently with severe postresuscitation myocardial dysfunction. This model would suggest further clinically relevant investigation on cardiac arrest and CPR.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.